
Privacy as a Service

Raymond Cheng

 Build practical cloud services that
 protect user privacy from
 powerful threats

2

3

Powerful Threats to User Privacy

4

Nation-State
Actors

Organized
Crime

Powerful Threats to User Privacy

5

Nation-State
Actors

Organized
Crime

Gather Intelligence

Covert Surveillance

Cyberwarfare

Corporate Espionage

Influence Politics

Censor content . . .

6

Annual Operating Expenses

7

Annual Operating Expenses

8

9

We have a moral responsibility to build technology
to protect human rights and freedoms

Threat Model

10

Clients

Network

Cloud

Networks are vulnerable

11

Clients

Malicious Network

Censorship, surveillance, misdirection

Cloud

Cloud services are routinely hacked

12

Malicious Clients

Hackers

Cloud

Malicious Network

Censorship, surveillance, misdirection

Governments can compel
cooperation

13

Malicious Cloud

Data requests, surveillance, control

Malicious Clients

Hackers

Malicious Network

Censorship, surveillance, misdirection

14

Malicious Cloud

Malicious Clients

Malicious Network

What security model can protect users from powerful threats?

Encryption not sufficient

15

Malicious Cloud

Malicious Clients

Malicious Network

TLS

Encrypted
at rest

Overview

16

Malicious Clients

2. Radiatus - harden web applications
from external intrusion

Malicious Network

1. uProxy - censorship circumvention

Overview

17

Malicious Cloud
3. Oblivious Cloud Services
Talek - private publish-subscribe

Malicious Clients

2. Radiatus - harden web applications
from external intrusion

Malicious Network

1. uProxy - censorship circumvention

Overview

18

Malicious Cloud
3. Oblivious Cloud Services
Talek - private publish-subscribe
(Cheng, Scott, Parno, Zhang, Krishnamurthy, Anderson, 2016)

Malicious Clients

2. Radiatus - harden web applications
from external intrusion
(Cheng, Scott, Ellenbogen, Howell, Roesner, Krishnamurthy,
Anderson, 2016)

Malicious Network

1. uProxy - censorship circumvention
Deployed to thousands over the world
(Cheng, Scott, Dixon, Krishnamurthy, Anderson, 2016)

Collaborators

Students:
Irene Zhang
Paul Ellenbogen
Elizabeth Wei
Bonnie Pan 19

Tom
Anderson

Arvind
Krishnamurthy

Franzi
Roesner

Will
Scott

Jon
Howell

Lucas
Dixon

Bryan
Parno

Nick Martindell
Tariq Yusuf
Caylan Lee
Nicholas Shahan

Overview

20

Malicious Cloud

3. Oblivious Cloud Services
Talek - private publish-subscribe

Malicious Clients

2. Radiatus - harden web applications
from external intrusion

Malicious Network

1. uProxy - censorship circumvention

Internet Censorship is a Pervasive Problem

21

Censored
Country

Evading Censorship with Centralized Proxies

22

Proxy

Censored
Country

Evading Censorship with Centralized Proxies

23

Proxy

Problem with
Centralized Proxies

● Trust: users need to trust proxy
 proxy needs to trust users

● Scale: easy to find and block Censored
Country

24

Do-It-Yourself Censorship Circumvention

25

Censored
Country

Do-It-Yourself Censorship Circumvention

26

Censored
Country

● Trust: Explicit consent between friends
● Scale: Trivially easy to install and operate proxy

27

28

uProxy Usage https://www.uproxy.org

Overview

29

Malicious Cloud

3. Oblivious Cloud Services
Talek - private publish-subscribe

Malicious Clients

2. Radiatus - harden web applications
from external intrusion

Malicious Network

1. uProxy - censorship circumvention

Websites Vulnerable to Hacking

30

Trust the cloud provider

Want to prevent external attacks

● Craft arbitrary network packets

Traditional Architecture

31

Trusted
Computing Base

Client

User A User B User C User D User E User F User G
...

Hacker

Traditional Architecture

32

Global
Application Logic

 +
Access Control

+
Authentication

Sockets

Global
Application Logic

 +
Access Control

+
Authentication

Sockets

Global
Application Logic

 +
Access Control

+
Authentication

Sockets

Trusted
Computing Base

Client

User A User B User C User D User E User F User G

...

...

Load Balancer

Hacker

Traditional Architecture

33

Global Database Memcache

Global
Application Logic

 +
Access Control

+
Authentication

Sockets

Global
Application Logic

 +
Access Control

+
Authentication

Sockets

Global
Application Logic

 +
Access Control

+
Authentication

Sockets

Trusted
Computing Base

Client

User A User B User C User D User E User F User G

...

...

Load Balancer

Hacker

Traditional Architecture

34

Global Database Memcache

Global
Application Logic

 +
Access Control

+
Authentication

Sockets

Global
Application Logic

 +
Access Control

+
Authentication

Sockets

Global
Application Logic

 +
Access Control

+
Authentication

Sockets

Trusted
Computing Base

Client

User A User B User C User D User E User F User G

...

...

Load Balancer

Hacker

Radiatus

Shared-nothing server-side architecture for
 strongly isolating users in web applications

● Sandboxed user containers for code and data
● Limit impact of unknown vulnerabilities

35

Radiatus

36

Radiatus API Radiatus API Radiatus API

Trusted
Computing Base

Client

User A User B User C User D User E User F User G

...

...

User Router + Auth

Sandboxed
application logic

B C D E F G H IA

Hacker

Radiatus

37

Database Memcache

Radiatus API Radiatus API Radiatus API

Trusted
Computing Base

Client

User A User B User C User D User E User F User G

...

...

User Router + Auth

Sandboxed
application logic

Guard Guard

B C D E F G H IA

Hacker

Radiatus

38

Database Memcache

Radiatus API Radiatus API Radiatus API

Trusted
Computing Base

Client

User A User B User C User D User E User F User G

...

...

User Router + Auth

Guard Guard

B C D E F G H IA

Sandboxed
application logic

Hacker

Radiatus Results

Benefits:

● Scales linearly
● Prevents most severe web-related vulnerabilities

Trade-offs:

● Additional cost: ~$0.008 / user-year
● Programmability of explicit message passing

39https://github.com/freedomjs/radiatus

Overview

40

Malicious Cloud

3. Oblivious Cloud Services
Talek - private publish-subscribe

Malicious Clients

2. Radiatus - harden web applications
from external intrusion

Malicious Network

1. uProxy - censorship circumvention

Trusted Cloud
Cloud
Global Application Logic
Global Storage

41

Client
User Input
Render View

Safeguarding
security

Untrusted Cloud
Cloud
Global Application Logic
Global Storage

42

Client
User Input
Render View

What if we don’t
trust the cloud?

Untrusted Cloud
Cloud

43

Client
Per-user application logic
Per-user storage
User Input
Render View

What do we
need the cloud

to do?

Untrusted Cloud
Cloud
Send data between users
Backup/sync storage
Analytics

44

Client
Per-user application logic
Per-user storage
User Input
Render View

What do we
need the cloud

to do?

the Vision of Oblivious Cloud Services
Cloud
Send data between users
Backup/sync storage
Analytics

45

Client
Per-user application logic
Per-user storage
User Input
Render View

Service

Application

Library

Sees
random
noise

Sends requests
Receives responses

the Vision of Oblivious Cloud Services
Cloud
Send data between users
Backup/sync storage
Analytics

46

Client
Per-user application logic
Per-user storage
User Input
Render View

Service

Application

Library

Sees
random
noise

Sends requests
Receives responses

Cloud services that are
secure by design

Talek: a Private
Publish-Subscribe Protocol

47

Publish-Subscribe

48

Chat

1:message

2:message

3:message

Newsfeed

1: image

2: tweet

3: video

Calendar

1: new
event

2: delete
event

3: update

Game

1: playerA
move

2: playerB
move

3: playerA
move

IoT

1: config
lights

2: security
video

3: set temp

Encryption protects the content...

49

Chat

1:message

2:message

3:message

Newsfeed

1: image

2: tweet

3: video

Calendar

1: new
event

2: delete
event

3: update

Game

1: playerA
move

2: playerB
move

3: playerA
move

IoT

1: config
lights

2: security
video

3: set temp

… but communication patterns are exposed

50

Journalist

Source

Collaborator

Activist Activists

New York Times Source

51

Thread

1:message

2:message

3:message

Country X Country Y

Alice
Source

Bob
Journalist

New York Times Source

52

Country X Country Y

Alice
Source

Bob
Journalist

Thread

1:message

2:message

3:message

New York Times Source

53

Thread

1:message

2:message

3:message

Country X Country Y

Alice
Source

Bob
Journalist

Relay

New York Times Source

54

Thread

1:message

2:message

3:message

Country X Country Y

Alice
Source

Bob
Journalist

Relay

Talek

55

Private publish-subscribe (pub/sub) system for sharing
data through untrusted clouds
• Hide both contents and communication patterns
• Made practical using oblivious logging

and private notifications
• System with 3-4 orders of magnitude better

performance than closest related work

Security Goal: Indistinguishability

56

Any two access sequences from a client look indistinguishable to the adversary

Security Goal: Indistinguishability

57

Randomness

Randomness

Randomness

Randomness

Randomness

Randomness

Randomness

Randomness

Randomness

Randomness

Randomness

Randomness

Any two access sequences from a client look indistinguishable to the adversary

Talek Goals

58

Security Goal: Indistinguishability
Any two access sequences from a client look indistinguishable to the adversary

Systems Goals:
• Mobile-friendly: 1 message per request/response

• Efficient: Thousands of online users sending a message every 5 seconds

• General Purpose: messaging and newsfeeds

• Low latency: ~5-10s

Limitations

59

Country X Country Y Country ZCountry W

● Any unavailable cloud will prevent access
● Host in widely used cloud providers

Anytrust Threat Model

60

Country X Country Y Country ZCountry W

● Application configured with >1 independent clouds
● Clouds logging everything about users

At least 1 non-colluding

Talek Threat Model

61

Mutually
distrusting users

Anytrust: At least 1 non-colluding

Trusted
groups

Private Information Retrieval (PIR)

62Client
Read bucket 2
q’=[0,0,1,0,0]

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

(Chor,1998)

Private Information Retrieval (PIR)

63Client
Read bucket 2
q’=[0,0,1,0,0]

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

q0=[1,1,1,0,1] q1=[1,0,1,0,0]

Random Random

Private Information Retrieval (PIR)

64Client
Read bucket 2
q’=[0,0,1,0,0]

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

q0=[1,1,1,0,1] q1=[1,0,1,0,0] q2=[0,1,1,0,1]
 =q’⊕q0⊕q1

Private Information Retrieval (PIR)

65Client

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

q0=[1,1,1,0,1] q1=[1,0,1,0,0] q2=[0,1,1,0,1]
 =q’⊕q0⊕q1

B0⊕B1⊕B2⊕B4 B0⊕B2 B1⊕B2⊕B4

Private Information Retrieval (PIR)

66Client
B0⊕B1⊕B2⊕B4⊕B0⊕B2⊕B1⊕B2⊕B4
 = B2

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

q0=[1,1,1,0,1] q1=[1,0,1,0,0] q2=[0,1,1,0,1]
 =q’⊕q0⊕q1

B0⊕B1⊕B2⊕B4 B0⊕B2 B1⊕B2⊕B4

PIR Limitations

67

● Expensive: Read requires scan of database
● Equal-sized buckets
● Consistent snapshots across all servers
● Read-only

Client Indistinguishability

68

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

PIR

Talek Overview

69

publish()

write queue

subscribe()

read queue

Client

Write Read

libtalek
Application

Talek Overview

70

publish()

write queue

subscribe()

read queue

Client

Write Read

libtalek
Application

Oblivious logging enables servers to operate
on noise, while delivering pub/sub functionality

Oblivious Logging

71

1. How do we bound the cost of a PIR operation?
2. How do publishers write in a way that looks random?
3. How do subscribers find messages on the server?
4. How do we deal with write conflicts?
5. How do we keep all servers consistent?

n

Fixed Size Server-side State

72

publish()

write queue

subscribe()

read queue

Client

Write Read

libtalek
Application

n n

n

Fixed Size Server-side State

73

publish()

write queue

subscribe()

read queue

Client

Write Read

libtalek
Application

n n

1. PIR Cost
Bound the cost of a PIR by configuring
the size of the database

Oblivious Logging

74

n

Write(bucket, encryptedMsg)

1. Remove oldest message
2. Insert message at specified bucket

Oblivious Logging

75

n

Write(bucket, encryptedMsg)

1. Remove oldest message
2. Insert message at specified bucket2. Random writes

Write encrypted messages to random buckets

Topics and Log Trails

76

3

4

2

1

n
Topic Handle:
{
 topicId: uint128,
 encKey: byte[]
 seed: uint128
}

PRF(seed, seqNo) mod n

Write(bucket, encryptedMsg)

Log Trail:

Topics and Log Trails

77

3

4

2

1

n
Topic Handle:
{
 topicId: uint128,
 encKey: byte[]
 seed: uint128
}

PRF(seed, seqNo) mod n

Write(bucket, encryptedMsg)

Log Trail:

3. Zero Coordination
Publishers and subscribers use secret topic
handles to coordinate

Indistinguishable Writes

78

{
 topicId: uint128,
 encKey: byte[],
 seed: uint128
}

Write bucket payload

Dummy PRF(idleSeed, i | 1) mod b Enc(idleKey, PRF(idle, i | 2))

Legitimate PRF(seed, seqNo) mod b Enc(encKey, message)

Handling Conflicts

79

3

4

2

1

n

Write(bucket, encryptedMsg)

Cuckoo Hashing

80

n

Write(bucket1,bucket2,encryptedMsg)

Cuckoo Evictions

81

n

Write(bucket1,bucket2,encryptedMsg)

Eviction

Cuckoo Hashing

82

4

3

4

1

2

2

1

3

2n

Topic Handle:
{
 topicId: uint128,
 encKey: byte[]
 seed1: uint128
 seed2: uint128
}

PRF(seed1, seqNo) mod n

Write(bucket1,bucket2,encryptedMsg)

Log Trail:

PRF(seed2, seqNo) mod n

Blocked Cuckoo Table

83

3

4

2

1 5

4

3

2 5

1

b

d

{
 topicId: uint128,
 encKey: byte[]
 seed1: uint128,
 seed2: uint128
}

PRF(seed1, seqNo) mod b

PRF(seed2, seqNo) mod b

Blocked Cuckoo Table

84

3

4

2

1 5

4

3

2 5

1

b

d

{
 topicId: uint128,
 encKey: byte[]
 seed1: uint128,
 seed2: uint128
}

PRF(seed1, seqNo) mod b

PRF(seed2, seqNo) mod b

4. Dense data structures
Blocked cuckoo hashing handles writes conflicts
with high density

Consistency

85

publish()

write queue

subscribe()

read queue

Client

Writes globally
ordered

Read requests
encrypted

libtalek
Application

Leader Follower Follower

Consistency

86

publish()

write queue

subscribe()

read queue

Client

Writes globally
ordered

Read requests
encrypted

libtalek
Application

Leader Follower Follower

4. Leaders enforce consistency
Timestamp ordering achieves sequential
consistency

Indistinguishable Writes

87

{
 topicId: uint128,
 seed1: uint128,
 seed2: uint128,
 encKey: byte[]
}

Write bucket1 bucket2 payload

Dummy PRF(idle, i | 1) mod b PRF(idle, i | 2) mod b Enc(idle, PRF(idle, i | 3))

Legitimate PRF(seed1, seqNo) mod b PRF(seed2, seqNo) mod b Enc(encKey, message)

Indistinguishable Reads

88

{
 topicId: uint128,
 seed1: uint128,
 seed2: uint128,
 encKey: byte[]
}

Read server0 server1 server2

Dummy Enc(serverKey0, pirVector) Enc(serverKey1, pirVector) Enc(serverKey2, pirVector)

Legitimate Enc(serverKey0, pirVector) Enc(serverKey1, pirVector) Enc(serverKey2, pirVector)

Scheduling Reads

89

publish()

write queue

subscribe()

read queue

Client
libtalek

Application

Leader Follower Follower

Topic 1
Topic 2
Topic 3

Private Notifications

90

publish()

write queue

subscribe()

read queue

Client
libtalek

Application

Leader Follower Follower

Topic 1
Topic 2
Topic 3

GetUpdates() returns
Global Interest Vector:
Privately which messages readable on the server

Talek Overview

91

publish()

write queue

subscribe()

read queue

Client
libtalek

Application

Leader Follower Follower

Topic 1
Topic 2
Topic 3

Write ReadGetUpdates

Experiment Setup

92

publish()

write queue

subscribe()

read queue

Write every 5 sec Read every 5 sec

libtalek
Messaging

AWS EC2

Thousands of Clients

Comparison to Previous Work

93

Comparison to Previous Work

94

Pung (OSDI 2016):
- Stronger threat model
- Uses computational

PIR

Comparison to Previous Work

95

Riposte
(Oakland 2015):
- Same threat

model
- Anonymous

writes by
“PIR in
reverse”

Scaling Clients

96

97

https://github.com/privacylab/talek

Future Work: Scale Private Cloud Services

Scale out architectures

98

Future Work: Support Diverse Functionality

Scale out architectures

99

Oblivious Cloud Services

Storage Pub/Sub Machine
Learning Analytics Search

Future Work: Application Integration

Scale out architectures

100

Oblivious Cloud Services

Storage Pub/Sub Machine
Learning Analytics Search

Application Integration

Future Work

Scale out architectures

101

Oblivious Cloud Services

Storage Pub/Sub Machine
Learning Analytics Search

Application Integration

Build practical cloud services that
 protect user privacy from
 powerful threats

102

103

References
[1] Cheng, R., Scott, W., Parno, B., Zhang, I., Krishnamurthy, A., Anderson, T. Talek: a Private Publish-Subscribe Protocol.
[2] Cheng, R., Scott, W., Ellenbogen, P., Howell, J., Roesner, F., Krishnamurthy, A., and Anderson, T. Radiatus: a Shared-Nothing
Server-Side Web Architecture. ACM Symposium on Cloud Computing (SOCC). 2016
[3] Zhang, I., Lebeck, N., Fonseca, P., Holt, B., Cheng, R., Norberg, A., Krishnamurthy, A., Levy, H. Diamond: Automating Data
Management and Storage for Wide-area, Reactive Applications. 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2016.
[4] Bhoraskar, R., Langenegger, D., He, P., Cheng, R., Scott, W., and Ernst, M. User scripting on Android using BladeDroid. The 5th
ACM SIGOPS Asia-Pacific Workshop on Systems (APSYS). 2014.
[5] Cheng, R., Scott, W., Krishnamurthy, A., and Anderson, T. FreeDOM: a New Baseline for the Web. The 11th ACM Workshop on Hot
Topics in Networks (HotNets XI). 2012.
[6] Cheng, R., Hong, Ji., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L., Zhao, F., and Chen, E. Kineograph: Taking the Pulse
of a Fast-Changing and Connected World. Proceedings of the 7th ACM European Conference on Computer Systems (Eurosys).
2012.
[7] Scott, W., Cheng, R., Li, J., Krishnamurthy, A., and Anderson, T. Blocking Resistant Network Services using Unblock. UW
Technical Report UW-CSE-14- 06-01. 2014.
[8] Cheng, R., Schueppert, M., Becker, H., and Thakur, M. SolocoRank: Social Signals for Local Search Quality. UW Technical Report
UW-CSE-13-11-05. 2013.
[9] Scott, W., Cheng, R., Krishnamurthy, A., and Anderson, T. freedom.js: an Architecture for Serverless Web Applications UW
Technical Report. UW-CSE-13-05- 03. 2013.
[10] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private Information Retrieval. Journal of the ACM (JACM), 45(6):965–981,
1998

104

Talek Related Work
System Security Goal Threat

Model
Technique Application

Talek indistinguishability ≥1 IT-PIR pub/sub

Pynchon Gate k-anonymity ≥1 mixnet/IT-PIR email

Riffle k-anonymity ≥1 mixnet/IT-PIR file-sharing

Riposte k-anonymity ≥1 IT-PIR broadcast

Dissent k-anonymity ≥1 DC-nets broadcast

Vuvuzela differential privacy ≥1 mixnet 1-1 messaging

DP5 indistinguishability ≥1 IT-PIR chat presence

Popcorn indistinguishability ≥1 C-PIR/IT-PIR video streaming

Pung indistinguishability 0 C-PIR key-value store

ORAM indistinguishability 0 ORAM storage

Weaker
Security Goal

Application
Specific

Prohibitively
Expensive

