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    Build practical cloud services that
    protect user privacy from 
    powerful threats
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Gather Intelligence

Covert Surveillance
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Corporate Espionage

Influence Politics

Censor content      . . .
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We have a moral responsibility to build technology
to protect human rights and freedoms
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Networks are vulnerable
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Clients
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Censorship, surveillance, misdirection

Cloud



Cloud services are routinely hacked
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Malicious Clients

Hackers

Cloud

Malicious Network

Censorship, surveillance, misdirection



Governments can compel
cooperation
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Malicious Cloud

Data requests, surveillance, control

Malicious Clients

Hackers

Malicious Network

Censorship, surveillance, misdirection
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Malicious Cloud

Malicious Clients

Malicious Network

What security model can protect users from powerful threats?  



Encryption not sufficient
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Malicious Cloud

Malicious Clients

Malicious Network

TLS

Encrypted 
at rest
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Malicious Cloud
3. Oblivious Cloud Services
Talek - private publish-subscribe 
(Cheng, Scott, Parno, Zhang, Krishnamurthy, Anderson, 2016)

Malicious Clients

2. Radiatus - harden web applications 
from external intrusion 
(Cheng, Scott, Ellenbogen, Howell, Roesner, Krishnamurthy, 
Anderson, 2016)

Malicious Network

1. uProxy - censorship circumvention 
Deployed to thousands over the world
(Cheng, Scott, Dixon, Krishnamurthy, Anderson, 2016)
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Malicious Cloud

3. Oblivious Cloud Services
Talek - private publish-subscribe

Malicious Clients

2. Radiatus - harden web applications 
from external intrusion

Malicious Network

1. uProxy - censorship circumvention



Internet Censorship is a Pervasive Problem
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Censored
Country



Evading Censorship with Centralized Proxies
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Evading Censorship with Centralized Proxies
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Proxy

Problem with 
Centralized Proxies

● Trust: users need to trust proxy
  proxy needs to trust users

● Scale: easy to find and block Censored
Country
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Do-It-Yourself Censorship Circumvention
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Censored
Country



Do-It-Yourself Censorship Circumvention
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Censored
Country

● Trust: Explicit consent between friends
● Scale: Trivially easy to install and operate proxy
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uProxy Usage https://www.uproxy.org



Overview

29

Malicious Cloud

3. Oblivious Cloud Services
Talek - private publish-subscribe

Malicious Clients

2. Radiatus - harden web applications 
from external intrusion

Malicious Network

1. uProxy - censorship circumvention



Websites Vulnerable to Hacking
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Trust the cloud provider

Want to prevent external attacks

● Craft arbitrary network packets



Traditional Architecture
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Radiatus

Shared-nothing server-side architecture for   
    strongly isolating users in web applications

● Sandboxed user containers for code and data
● Limit impact of unknown vulnerabilities
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Radiatus
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Database Memcache

Radiatus API Radiatus API Radiatus API

Trusted 
Computing Base

Client

User A User B User C User D User E User F User G
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User Router + Auth

Guard Guard
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Sandboxed
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Hacker



Radiatus Results

Benefits:

● Scales linearly
● Prevents most severe web-related vulnerabilities

Trade-offs:

● Additional cost: ~$0.008 / user-year
● Programmability of explicit message passing

39https://github.com/freedomjs/radiatus
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Malicious Cloud

3. Oblivious Cloud Services
Talek - private publish-subscribe

Malicious Clients

2. Radiatus - harden web applications 
from external intrusion

Malicious Network

1. uProxy - censorship circumvention



Trusted Cloud
Cloud
Global Application Logic
Global Storage
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Client
User Input
Render View

Safeguarding 
security



Untrusted Cloud
Cloud
Global Application Logic
Global Storage
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Client
User Input
Render View

What if we don’t 
trust the cloud?



Untrusted Cloud
Cloud
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Client
Per-user application logic
Per-user storage
User Input
Render View

What do we 
need the cloud 

to do?



Untrusted Cloud
Cloud
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the Vision of Oblivious Cloud Services
Cloud
Send data between users
Backup/sync storage
Analytics
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the Vision of Oblivious Cloud Services
Cloud
Send data between users
Backup/sync storage
Analytics
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Client
Per-user application logic
Per-user storage
User Input
Render View

Service

Application

Library

Sees 
random 
noise

Sends requests
Receives responses

Cloud services that are 
secure by design



Talek: a Private 
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Publish-Subscribe
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Chat

1:message

2:message

3:message

Newsfeed

1: image

2: tweet

3: video

Calendar

1: new 
event

2: delete 
event

3: update

Game

1: playerA 
move

2: playerB 
move

3: playerA 
move

IoT

1: config
lights

2: security 
video

3: set temp



Encryption protects the content...
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… but communication patterns are exposed
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New York Times Source
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New York Times Source
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Talek
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Private publish-subscribe (pub/sub) system for sharing 
data through untrusted clouds
• Hide both contents and communication patterns
• Made practical using oblivious logging 

and private notifications
• System with 3-4 orders of magnitude better 

performance than closest related work



Security Goal: Indistinguishability
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Any two access sequences from a client look indistinguishable to the adversary



Security Goal: Indistinguishability
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Any two access sequences from a client look indistinguishable to the adversary



Talek Goals
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Security Goal: Indistinguishability
Any two access sequences from a client look indistinguishable to the adversary

Systems Goals:
• Mobile-friendly: 1 message per request/response

• Efficient: Thousands of online users sending a message every 5 seconds

• General Purpose: messaging and newsfeeds

• Low latency: ~5-10s



Limitations
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Country X Country Y Country ZCountry W

● Any unavailable cloud will prevent access
● Host in widely used cloud providers



Anytrust Threat Model
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Country X Country Y Country ZCountry W

● Application configured with >1 independent clouds
● Clouds logging everything about users

At least 1 non-colluding



Talek Threat Model
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Mutually 
distrusting users

Anytrust: At least 1 non-colluding

Trusted 
groups



Private Information Retrieval (PIR)

62Client
Read bucket 2
q’=[0,0,1,0,0]

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

(Chor,1998)



Private Information Retrieval (PIR)
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Private Information Retrieval (PIR)

64Client
Read bucket 2
q’=[0,0,1,0,0]

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

q0=[1,1,1,0,1] q1=[1,0,1,0,0] q2=[0,1,1,0,1]
     =q’⊕q0⊕q1



Private Information Retrieval (PIR)

65Client

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

B
4

B
3

B
2

B
1

B
0

q0=[1,1,1,0,1] q1=[1,0,1,0,0] q2=[0,1,1,0,1]
     =q’⊕q0⊕q1

B0⊕B1⊕B2⊕B4 B0⊕B2 B1⊕B2⊕B4



Private Information Retrieval (PIR)
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PIR Limitations
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● Expensive: Read requires scan of database
● Equal-sized buckets
● Consistent snapshots across all servers
● Read-only



Client Indistinguishability
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Talek Overview
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publish()

write queue

subscribe()

read queue

Client

Write Read

libtalek
Application

Oblivious logging enables servers to operate 
on noise, while delivering pub/sub functionality



Oblivious Logging
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1. How do we bound the cost of a PIR operation?
2. How do publishers write in a way that looks random?
3. How do subscribers find messages on the server?
4. How do we deal with write conflicts?
5. How do we keep all servers consistent?



n

Fixed Size Server-side State
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publish()

write queue
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Fixed Size Server-side State

73

publish()

write queue

subscribe()

read queue

Client

Write Read

libtalek
Application

n n

1. PIR Cost
Bound the cost of a PIR by configuring 
the size of the database



Oblivious Logging
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n

Write(bucket, encryptedMsg)

1. Remove oldest message
2. Insert message at specified bucket



Oblivious Logging
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n

Write(bucket, encryptedMsg)

1. Remove oldest message
2. Insert message at specified bucket2. Random writes

Write encrypted messages to random buckets



Topics and Log Trails
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3

4

2

1

n
Topic Handle:
{
  topicId: uint128,
  encKey: byte[]
  seed: uint128
}

PRF(seed, seqNo) mod n

Write(bucket, encryptedMsg)

Log Trail:



Topics and Log Trails
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3

4

2

1

n
Topic Handle:
{
  topicId: uint128,
  encKey: byte[]
  seed: uint128
}

PRF(seed, seqNo) mod n

Write(bucket, encryptedMsg)

Log Trail:

3. Zero Coordination
Publishers and subscribers use secret topic 
handles to coordinate



Indistinguishable Writes
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{
  topicId: uint128,
  encKey: byte[],
  seed: uint128
}

Write bucket payload

Dummy PRF(idleSeed, i | 1) mod b Enc(idleKey, PRF(idle, i | 2))

Legitimate PRF(seed, seqNo) mod b Enc(encKey, message)



Handling Conflicts
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Write(bucket, encryptedMsg)



Cuckoo Hashing
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n

Write(bucket1,bucket2,encryptedMsg)



Cuckoo Evictions
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n

Write(bucket1,bucket2,encryptedMsg)

Eviction



Cuckoo Hashing
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2n

Topic Handle:
{
  topicId: uint128,
  encKey: byte[]
  seed1: uint128
  seed2: uint128
}

PRF(seed1, seqNo) mod n

Write(bucket1,bucket2,encryptedMsg)

Log Trail:

PRF(seed2, seqNo) mod n



Blocked Cuckoo Table
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Blocked Cuckoo Table

84

3

4

2

1 5

4
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1

b

d

{
  topicId: uint128,
  encKey: byte[]
  seed1: uint128,
  seed2: uint128
}

PRF(seed1, seqNo) mod b

PRF(seed2, seqNo) mod b

4. Dense data structures
Blocked cuckoo hashing handles writes conflicts 
with high density
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Writes globally 
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Application
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publish()

write queue

subscribe()

read queue

Client

Writes globally 
ordered

Read requests 
encrypted

libtalek
Application

Leader Follower Follower

4. Leaders enforce consistency
Timestamp ordering achieves sequential 
consistency



Indistinguishable Writes
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{
  topicId: uint128,
  seed1: uint128,
  seed2: uint128,
  encKey: byte[]
}

Write bucket1 bucket2 payload

Dummy PRF(idle, i | 1) mod b PRF(idle, i | 2) mod b Enc(idle, PRF(idle, i | 3))

Legitimate PRF(seed1, seqNo) mod b PRF(seed2, seqNo) mod b Enc(encKey, message)



Indistinguishable Reads
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{
  topicId: uint128,
  seed1: uint128,
  seed2: uint128,
  encKey: byte[]
}

Read server0 server1 server2

Dummy Enc(serverKey0, pirVector) Enc(serverKey1, pirVector) Enc(serverKey2, pirVector)

Legitimate Enc(serverKey0, pirVector) Enc(serverKey1, pirVector) Enc(serverKey2, pirVector)



Scheduling Reads
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publish()

write queue

subscribe()

read queue

Client
libtalek

Application

Leader Follower Follower

Topic 1
Topic 2
Topic 3



Private Notifications
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publish()

write queue

subscribe()

read queue

Client
libtalek

Application

Leader Follower Follower

Topic 1
Topic 2
Topic 3

GetUpdates() returns
Global Interest Vector: 
Privately which messages readable on the server
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publish()

write queue

subscribe()

read queue

Client
libtalek

Application

Leader Follower Follower

Topic 1
Topic 2
Topic 3

Write ReadGetUpdates



Experiment Setup
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publish()

write queue

subscribe()

read queue

Write every 5 sec Read every 5 sec

libtalek
Messaging

AWS EC2

Thousands of Clients



Comparison to Previous Work
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Comparison to Previous Work
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Pung (OSDI 2016):
- Stronger threat model
- Uses computational 

PIR



Comparison to Previous Work
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Riposte 
(Oakland 2015):
- Same threat 

model
- Anonymous 

writes by 
“PIR in 
reverse” 



Scaling Clients
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https://github.com/privacylab/talek



Future Work: Scale Private Cloud Services

Scale out architectures
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Future Work: Support Diverse Functionality

Scale out architectures
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Oblivious Cloud Services

Storage Pub/Sub Machine 
Learning Analytics Search



Future Work: Application Integration

Scale out architectures
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Oblivious Cloud Services

Storage Pub/Sub Machine 
Learning Analytics Search

Application Integration



Future Work

Scale out architectures
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Oblivious Cloud Services

Storage Pub/Sub Machine 
Learning Analytics Search

Application Integration

Build practical cloud services that
    protect user privacy from 
    powerful threats
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Talek Related Work
System Security Goal Threat 

Model
Technique Application

Talek indistinguishability ≥1 IT-PIR pub/sub

Pynchon Gate k-anonymity ≥1 mixnet/IT-PIR email

Riffle k-anonymity ≥1 mixnet/IT-PIR file-sharing

Riposte k-anonymity ≥1 IT-PIR broadcast

Dissent k-anonymity ≥1 DC-nets broadcast

Vuvuzela differential privacy ≥1 mixnet 1-1 messaging

DP5 indistinguishability ≥1 IT-PIR chat presence

Popcorn indistinguishability ≥1 C-PIR/IT-PIR video streaming

Pung indistinguishability 0 C-PIR key-value store

ORAM indistinguishability 0 ORAM storage

Weaker 
Security Goal

Application
Specific

Prohibitively
Expensive


