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Abstract
Users of today’s popular wide-area apps (e.g., Twitter,
Google Docs, and Words with Friends) must no longer
save and reload when updating shared data; instead, these
applications are reactive, providing the illusion of con-
tinuous synchronization across mobile devices and the
cloud. Achieving this illusion poses a complex distributed
data management problem for programmers. This pa-
per presents the first reactive data management service,
called Diamond, which provides persistent cloud storage,
reliable synchronization between storage and mobile de-
vices, and automated execution of application code in
response to shared data updates. We demonstrate that
Diamond greatly simplifies the design of reactive appli-
cations, strengthens distributed data sharing guarantees,
and supports automated reactivity with low performance
overhead.

1 Introduction
The modern world’s ubiquitous mobile devices, infinite
cloud storage, and nearly constant network connectivity
are changing applications. Led by social networks (e.g.,
Twitter), social games (e.g., Words with Friends) and col-
laboration tools (e.g., Google Docs), today’s popular ap-
plications are reactive [41]: they provide users with the
illusion of continuous synchronization across their de-
vices without requiring them to explicitly save, reload,
and exchange shared data. This trend, not limited merely
to mobile apps, includes the latest distributed versions
of traditional desktop apps on both Windows [13] and
OSX [4].

Maintaining this illusion presents a challenging dis-
tributed data management problem for application pro-
grammers. Modern reactive applications consist of widely
distributed processes sharing data across mobile devices,
desktops, and cloud servers. These processes make concur-
rent data updates, can stop or fail at any time, and may be
connected by slow or unreliable links. While distributed
storage systems [17, 77, 15, 23, 20] provide persistence
and availability, programmers still face the formidable
challenge of synchronizing updates between application
processes and distributed storage in a fault-tolerant, con-

sistent manner.
This paper presents Diamond, the first reactive data

management service (RDS) for wide-area applications
that continuously synchronizes shared application data
across distributed processes. Specifically, Diamond per-
forms the following functions on behalf of an application:
(1) it ensures that updates to shared data are consistent
and durable, (2) it reliably coordinates and synchronizes
shared data updates across processes, and (3) it automati-
cally triggers reactive code when shared data changes so
that processes can perform appropriate tasks. For example,
when a user updates data on one device (e.g., a move in a
multi-player game), Diamond persists the update, reliably
propagates it to other users’ devices, and transparently
triggers application code on those devices to react to the
changes.

Reactive data management in the wide-area context re-
quires a balanced consideration of performance trade-offs
and reasoning about complex correctness requirements in
the face of concurrency. Diamond implements the difficult
mechanisms required by these applications (such as log-
ging and concurrency control), letting programmers focus
on high-level data-sharing requirements (e.g., atomicity,
concurrency, and data layout). Diamond introduces three
new concepts:

1. Reactive Data Map (rmap), a primitive that lets ap-
plications create reactive data types – shared, per-
sistent data structures – and map them into the Dia-
mond data management service so it can automati-
cally synchronize them across distributed processes
and persistent storage.

2. Reactive Transactions, an interactive transaction
type that automatically re-executes in response to
shared data updates. These “live” transactions run
application code to make local, application-specific
updates (e.g., UI changes).

3. Data-type Optimistic Concurrency Control
(DOCC), a mechanism that leverages data-type
semantics to concurrently commit transactions
executing commutative operations (e.g., writes to
different list elements, increments to a counter). Our
experiments show that DOCC copes with wide-area
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latencies very effectively, reducing abort rates by up
to 5x.

We designed and implemented a Diamond prototype in
C++ with language bindings for C++, Python, and Java on
both x86 and Android platforms. We evaluate Diamond
by building and measuring both Diamond and custom ver-
sions (using explicit data management) of four reactive
apps. Our experiments show that Diamond significantly
reduces the complexity and size of reactive applications,
provides strong transactional guarantees that eliminate
data races, and supports automatic reactivity with perfor-
mance close to that of custom-written reactive apps.

2 Traditional Data Management Tech-
niques for Reactive Apps

Reactive applications require synchronized access to dis-
tributed shared data, similar to shared virtual memory sys-
tems [46, 10]. For practical performance in the wide-area
environment, apps must be able to control: (1) what data
in each process is shared, (2) how often it is synchronized,
and (3) when concurrency control is needed. Existing
applications use one of several approaches to achieve syn-
chronization with control. This section demonstrates that
these approaches are all complex, error-prone, and make
it difficult to reason about application data consistency.

As an example, we analyze a simple social game based
on the 100 game [1]. Such games are played by mil-
lions [78], and their popularity changes constantly; there-
fore, game developers want to build them quickly and
focus on game logic rather than data management. Be-
cause game play increasingly uses real money (almost $2
billion last year [24]), their design parallels other reactive
applications where correctness is crucial (e.g., apps for
first responders [52] and payment apps [81, 72]).

In the 100 game, players alternately add a number be-
tween 1 and 10 to the current sum, and the first to reach
100 wins. Players make moves and can join or leave the
game at different times; application processes can fail at
any time. Thus, for safety, the game must maintain tradi-
tional ACID guarantees – atomicity, consistency, isolation
and durability – as well as reactivity for data updates. We
call this combination of properties ACID+R. While a stor-
age system provides ACID guarantees for its own data,
those guarantees do not extend to application processes.
In particular, pushing updates to storage on mobile devices
is insufficient for reactivity because application processes
must re-compute local data derived from shared data to
make changes visible to users and other components.

2.1 Roll-your-own Data Management

Many current reactive apps “roll-their-own”
application-specific synchronization across distributed
processes on top of general-purpose distributed stor-
age (e.g., Spanner [17], Dropbox [23]). Figure 1
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Figure 1: The 100 game. Each box is a separate address space.
players, turn and sum are shared across address spaces and the
storage system; myturn? and curplay are derived from shared
data. When shared values change, the app manually updates
distributed storage, other processes with the shared data, and any
data in those processes derived from shared data, as shown by
the numbered steps needed to propagate Alice’s move to Bob.

shows a typical three-tiered architecture used by these
apps (e.g., PlayFish uses it to serve over 50 million
users/month [34]). Processes on client devices access
stateless cloud servers, which store persistent game
state in a distributed storage system and use a reliable
notification service (e.g., Thialfi [3]) to trigger changes
in other processes for reactivity. While all application
processes can fail, we assume strong guarantees – such
as durability and linearizability – for the storage system
and notification service. Although such apps could rely
on a single server to run the game, this would create a
centralized failure point. Clients cache game data to give
users a responsive experience and to reduce load on the
cloud servers [34].

The numbers in Figure 1 show the data management
steps that the application must explicitly perform for Al-
ice’s move (adding 5 to the sum). Alice’s client: (1) up-
dates turn and sum locally, (2) calculates new values for
myturn? and curplay, and (3) sends the move to a cloud
server. The server: (4) writes turn and sum to distributed
storage, and (5) sends a notification to Bob. The notifica-
tion service: (6) delivers the notification to Bob’s client,
which (7) contacts a cloud server to get the latest move.
The server: (8) reads from distributed storage and returns
the latest turn and sum. Bob’s client: (9) updates turn and
sum locally, and (10) re-calculates myturn? and curplay.

Note that such data management must be customized
to such games, making it difficult to implement a
general-purpose solution. For example, only the appli-
cation knows that: (1) clients share turn and sum (but not
myname), (2) it needs to synchronize turn and sum after
each turn (but not players), and (3) it does not need con-
currency control because turn already coordinates moves.

Correctly managing this application data demands that
the programmer reason about failures and data races at
every step. For example, the cloud server could fail in the
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middle of step 4, violating atomicity. It could also fail
between steps 4 and 5, making the application appear as
if it is no longer reactive.

A new player, Charlie, could join the game while Bob
makes his move, leading to a race; if Alice receives Bob’s
notification first, but Charlie writes to storage first, then
both Alice and Charlie would think that it was their turn,
violating isolation.

Finally, even if the programmer were to correctly han-
dle every failure and data race and write bug-free code,
reasoning about the consistency of application data would
prove difficult. Enforcing a single global ordering of join,
leave and move operations requires application processes
to either forgo caching shared data (or data derived from
shared data) altogether or invalidate all cached copies and
update the storage system atomically on every operation.
The first option is not realistic in a wide-area environ-
ment, while the second is not possible when clients may
be unreachable.

2.2 Wide-area Storage Systems

A simple, alternative way to manage data manually is
to store shared application data in a wide-area storage
system (e.g., Dropbox [23]). That is, rather than calling
move in step 3, the application stores and updates turn and
sum in a wide-area storage system. Though simple, this
design can be very expensive. Distributed file systems are
not designed to frequently synchronize small pieces of
data, so their coarse granularity can lead to moving more
data than necessary and false sharing.

Further, while this solution synchronizes Alice’s up-
dates with the cloud, it does not ensure that Bob receives
Alice’s updates. To simulate reactive behavior and en-
sure that Bob sees Alice’s updates, Alice must still use a
wide-area notification system (e.g., Apple Push Notifica-
tions [6]) to notify Bob’s client after her update. Unfor-
tunately, this introduces a race condition: if Bob’s client
receives the notification before the wide-area storage sys-
tem synchronizes Alice’s update, then Bob will not see
Alice’s changes. Worse, Bob will never check the storage
system again, so he will never see Alice’s update, leaving
him unable to make progress. Thus, this solution retains
all of the race conditions described in Section 2.1 and
introduces some new ones.

2.3 Reactive Programming Frameworks

Several programming frameworks (e.g., Firebase [26],
Parse [60] with React [64], Meteor [51]) have recently
been commercially developed for reactive applications.
These frameworks combine storage and notification sys-
tems and automate data management and synchronization
across systems. However, they do not provide a clear con-
sistency model, making it difficult for programmers to
reason about the guarantees provided by their synchro-
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Figure 2: Diamond 100 game data model. The app rmaps
players, turn and sum, updates them in read-write transactions
and computes myturn? and curplay in a reactive transaction.

nization mechanisms. Further, they offer no distributed
concurrency control, leaving application programmers to
contend with race conditions; for example, they can lead
to the race condition described in Section 2.1.

3 Diamond’s System and Programming
Model

Diamond is a new programming platform designed to sim-
plify the development of wide-area reactive applications.
This section specifies its data and transaction models and
system call API.

3.1 System Model

Diamond applications consist of processes running on
mobile devices and cloud servers. Processes can commu-
nicate through Diamond or over a network, which can
vary from local IPC to the Internet. Every application pro-
cess is linked to a client-side library, called LIBDIAMOND,
which provides access to the shared Diamond cloud – a
highly available, fault-tolerant, durable storage system.
Diamond subsumes some applications’ server-side func-
tionality, but our goal is not to eliminate such code. We
expect cloud servers to continue providing reliable and
efficient access to computation and datacenter services
(e.g., data mining) while accessing shared data needed for
these tasks through Diamond.

Figure 2 shows the 100 game data model using Dia-
mond. Compared to Figure 1, the application can directly
read and write to shared data in memory, and Diamond
ensures updates are propagated to cloud storage and other
processes. Further, Diamond’s strong transactional guar-
antees eliminate the need for programmers to reason about
failures and concurrency.

3.2 Data Model

Diamond supports reactive data types for fine-grained
synchronization, efficient concurrency control, and persis-
tence. As with popular data structure stores [19], such as
Redis [67] and Riak [68], we found that simple data types
are general enough to support a wide range of applications
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Table 1: Reactive data types.

Type Operations Description

Boolean Get(), Put(bool) Primitive boolean
Long Get(), Put(long) Primitive number
String Get(), Put(str) Primitive string
Counter Get(), Put(long)

Increment(long)

Decrement(long)

Long Counter

IDGen GetUID() Unique ID generator
LongSet Get(idx), Contains(long)

Insert(long)

Ordered number set

LongList Get(idx), Set(idx, long)

Append(long)

Number list

StringSet Get(idx), Contains(str)
Insert(str)

Ordered string set

StringList Get(idx), Set(idx, str)

Append(str)

String list

HashTable Get(key), Set(key, val) Unordered map

and provide the necessary semantics to enable commuta-
tivity and avoid false sharing. Table 1 lists the supported
persistent data types and their operations. In addition to
primitive data types, like String, Diamond supports sim-
ple Conflict-free Replicated Data-types (CRDTs) [69]
(e.g., Counter) and collection types (e.g., LongSet) with
efficient type-specific interfaces. Using the most specific
type possible provides the best performance (e.g., using a
Counter for records that are frequently incremented).

A single Diamond instance provides a set of tables;
each table is a key-to-data-type map, where each entry,
or record, has a single persistent data type. Applications
access Diamond through language bindings; however, ap-
plications need not be written in a single language. We
currently support C++, Python and Java on both x86 and
Android but could easily add support for other languages
(e.g., Swift [5]).

3.3 System Calls

While apps interact with Diamond largely through reactive
data types, we provide a minimal system call interface,
shown in Table 2, to support transactions and rmap.

3.3.1 The rmap Primitive

rmap is Diamond’s key abstraction for providing shared
memory that is flexible, persistent, and reactive across
wide-area application processes. Applications call rmap
with an application variable and a key to the Diamond
record, giving them control over what data in their address
space is shared and how it is organized. In this way, dif-
ferent application processes (e.g., an iOS and an Android
client) and different application versions (e.g., a new and
current code release) can effectively share data. When
rmapping records to variables, the data types must match.
Diamond’s system call library checks at runtime and re-
turns an error from the rmap call if a mismatch occurs.

Table 2: Diamond system calls.

System call Description

create(table, [isolation]) Create table
status = rmap(var, table, key) Bind var to key

id = execute txn(func, cb) Start read-write transaction
id = register reactxn(func) Start reactive transaction
reactxn stop(txn id) Stop re-executing
commit txn(), abort txn() Commit/Abort and exit

3.3.2 Transaction model

Application processes use Diamond transactions to read
and write rmapped variables. Diamond transactions are
interactive [73], i.e., they let applications interleave ap-
plication code with accesses to reactive data types. We
support both standard read-write transactions and new
reactive transactions. Applications cannot execute trans-
actions across rmapped variables from different tables,
while operations executed outside transactions are treated
as single-op transactions.

Read-write transactions. Diamond’s read-write trans-
actions let programmers safely and easily access shared re-
active data types despite failures and concurrency. Appli-
cations invoke read-write transactions using execute txn.
The application passes closures for both the transaction
and a completion callback. Within the transaction closure,
the application can read or write rmapped variables and
variables in the closure, but it cannot modify program
variables outside the closure. This limitation ensures: (1)
the transaction can access all needed variables when it
executes asynchronously (and they have not changed),
and (2) the application is not affected by the side effects
of aborted transactions. Writes to rmapped variables are
buffered locally until commit, while reads go to the client-
side cache or to cloud storage.

Before execute txn returns, Diamond logs the trans-
action, with its read and write sets, to persistent storage.
This step guarantees that the transaction will eventually
execute and that the completion callback will eventually
execute even if the client crashes and restarts. This guar-
antee lets applications buffer transactions if the network is
unavailable and easily implement custom retry functional-
ity in the completion callback. If the callback reports that
the transaction successfully committed, then Diamond
guarantees ACID+R semantics for all accesses to rmapped
records; we discuss these in more detail in Section 3.4.
On abort, Diamond rolls back all local modifications to
rmapped variables.

Reactive transactions. Reactive transactions help ap-
plication processes automatically propagate changes
made to reactive data types. Each time a read-write trans-
action modifies an rmapped variable in a reactive transac-
tion’s read set, the reactive transaction re-executes, prop-
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agating changes to derived local variables. As a result,
reactive transactions provide a “live” view that gives the
illusion of reactivity while maintaining an imperative
programming style comfortable to application program-
mers. Further, because they read a consistent snapshot of
rmapped data, reactive transactions avoid application-level
bugs common to reactive programming models [48].

Applications do not explicitly invoke reactive transac-
tions; instead, they register them by passing a closure to
register reactxn, which returns a txn id that can be used
to unregister the transaction with reactxn stop. Within
the reactive transaction closure, the application can read
but not write rmapped records, preventing potential data
flow cycles. Since reactive transactions are designed to
propagate changes to local variables, the application can
read and write to local variables at any time and trigger
side-effects (i.e., print-outs, updating the UI). Diamond
guarantees that reactive transactions never abort because
it commits read-only transactions locally at the client.
Section 4 details the protocol for reactive transactions.

Reactive transactions run in a background thread, con-
currently with application threads. Diamond transactions
do not protect accesses to local variables, so the program-
mer must synchronize with locks or other mechanisms.
The read set of a reactive transaction can change on every
execution; Diamond tracks the read set from the latest
execution. Section 6.2 explains how to use reactive trans-
actions to build general-purpose, reactive UI elements.

3.4 Reactive Data Management Guarantees

Diamond’s guarantees were designed to meet the require-
ments of reactive applications specified in Section 2, elim-
inating the need for each application to implement its own
complex data management. To do so, Diamond enforces
ACID+R guarantees for reactive data types:

• Atomicity: All or no updates to shared records in a
read-write transaction succeed.

• Consistency: Accesses in all transactions reflect a
consistent view of shared records.1

• Isolation: Accesses in all transactions reflect a
global ordering of committed read-write transac-
tions.

• Durability: Updates to shared records in committed
read-write transactions are never lost.

• Reactivity: Accesses to modified records in regis-
tered reactive transactions will eventually re-execute.

These guarantees create a producer-consumer relation-
ship: Diamond’s read-write transactions produce updates
to reactive data types, while reactive transactions con-
sume those updates and propagate them to locally derived
data. However, unlike the traditional producer-consumer

1The C in ACID is not well defined outside a database context.
Diamond simply guarantees that each transaction reads a consistent
snapshot.

Table 3: Diamond’s isolation levels. Isolation levels for read-
write transactions and associated ones for reactive transactions.

Read-write Isolation Level Reactive Isolation Level

Strict Serializability

Snapshot Isolation

Read Committed

Stronger
Guarantees

Fewer
Aborts

Serializable Snapshot

Serializable Snapshot

Read Committed

paradigm, this mechanism is transparent to applications
because the ACID+R guarantees ensure that Diamond
automatically re-executes the appropriate reactive trans-
actions when read-write transactions commit.

Table 3 lists Diamond’s isolation levels, which can be
set per table. Diamond’s default is strict serializability
because it eliminates the need for application program-
mers to deal with inconsistencies caused by data races
and failures. Lowering the isolation level leads to fewer
aborts and more concurrency; however, more anomalies
arise, so applications should either expect few conflicts, re-
quire offline access, or tolerate inaccuracy (e.g., Twitter’s
most popular hash tag statistics). Section 5.1 describes
how DOCC increases concurrency and reduces aborts for
transactions even at the highest isolation levels.

3.5 A Simple Code Example

To demonstrate the power of Diamond to simplify reactive
applications, Figure 3 shows code to implement the 100
game from Section 2 in Diamond. This implementation
provides persistence, atomicity, isolation and reactivity
for every join and move operation in only 34 lines of code.
We use three reactive data types for shared game data,
declared on line 2 and rmapped in lines 7-9. It is important
to ensure a strict ordering of updates, so we create a table
in strict serializable mode on line 6. On line 12, we de-
fine a general-purpose transaction callback for potential
transaction failures. On line 16, we execute a read-write
transaction to add the player to the game, passing myname

by value into the transaction closure. Using DOCC allows
Diamond to commit two concurrent executions of this
transaction while guaranteeing strict serializability.

Line 20 registers a reactive transaction to print out the
score and current turn. Diamond’s ACID+R guarantees
ensure that the transaction re-executes if players, turn
or sum change, so the user always has a consistent, up-to-
date view. Note that we can print to stdout because the
reactive transaction will not abort, and the printouts reflect
a serializable snapshot, avoiding reactive glitches [48]. On
line 32, we wait for user input in the while loop and use a
read-write transaction to commit the entered move.

Diamond’s strong guarantees eliminate the need for
programmers to reason about data races or failures. Tak-
ing our examples from Section 2, Diamond ensures that
when the game commits Alice’s move, the move is never
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1 int main(int argc , char **argv) {
2 DStringSet players; DCounter sum , turn;
3 string myname = string(argv [1]);
4
5 / / Map game s t a t e
6 create("100 game", STRICT_SERIALIZABLE );
7 rmap(players , "100 game", "players");
8 rmap(sum , "100 game", "sum");
9 rmap(turn , "100 game", "turn");

10
11 / / General−purpose c a l l b a c k , e x i t i f t x n f a i l e d
12 auto cb = [] (txn_func_t txn , int status) {
13 if (status == REPLY_FAIL) exit (1); };
14
15 / / Add u s e r t o t h e game
16 execute_txn ([ myname] () {
17 players.Insert(myname ); }, cb);
18
19 / / S e t up our p r i n t o u t s
20 register_reactxn ([ myname] () {
21 string curplay =
22 players[turn % players.size ()];
23 bool myturn = myname == curplay;
24 cout << "Sum: " << sum << "\n";
25 if (sum >= 100)
26 cout << curplay << " won!";
27 else if (myturn)
28 cout << "Your turn: ";
29 });
30
31 / / Cyc le on u s e r i n p u t
32 while (1) {
33 int inc; cin >> inc;
34 execute_txn ([myname , inc] () {
35 bool myturn =
36 myname == players[turn % players.size ()];
37 / / check i n p u t s
38 if (! myturn || inc < 1 || inc > 10) {
39 abort_txn (); return;
40 }
41 sum += inc; if (sum < 100) turn ++;
42 }, cb);
43 }
44 return 0;
45 }

Figure 3: Diamond code example. Implementation of the 100
game using Diamond. Omitting includes, set up, and error han-
dling, this code implements a working, C++ version of the 100
game [1]. DStringSet, DLong and DCounter are reactive data
types provided by the Diamond C++ library.

lost and Bob eventually sees it. Diamond also ensures
that, if Charlie joins before Bob makes his move, Alice
either sees Charlie join without Bob’s move, or both, but
never sees Bob’s move without seeing Charlie join. As a
result, programmers no longer need to reason about race
conditions, greatly simplifying the game’s design. To our
knowledge, no other system provides all of Diamond’s
ACID+R properties.

3.6 Offline Support

Wi-Fi and cellular data networks have become widely
available, and reactive applications typically have limited
offline functionality; thus, Diamond focuses on providing
online reactivity, unlike storage systems (e.g., Bayou [77]
and Simba [61]). However, Diamond still provides limited
offline support. If the network is unavailable, execute txn

logs and transparently retries, while Diamond’s CRDTs
make it more likely that transactions commit after be-
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Figure 4: Diamond architecture. Distributed processes share a
single instance of the Diamond storage system.

ing retried. For applications with higher contention, Dia-
mond’s read committed mode enables commits locally at
the client while offline, and any modifications eventually
converge to a consistent state for Diamond’s CRDTs.

3.7 Security

Similar to existing client-focused services, like Fire-
base [26] and Dropbox [23], Diamond trusts application
clients not to be malicious. Application clients authenti-
cate with the Diamond cloud through their LIBDIAMOND

client before they can rmap or access reactive data types.
Diamond supports isolation between users through ac-
cess control lists (ACLs); applications can set rmap, read,
and write permissions per table. Within tables, keys func-
tion as capabilities; a client with a key to a record has
permission to access it. Applications can defend against
potentially malicious clients by implementing server-side
security checks using reactive transactions on a secure
cloud server.

4 Diamond’s System Design
This section relates Diamond’s architecture, the design of
rmap, and its transaction protocols.

4.1 Data Management Architecture

Figure 4 presents an overview of Diamond’s key com-
ponents. Each LIBDIAMOND client provides client-side
caching and access to cloud storage for the application
process. It also registers, tracks and re-executes reactive
transactions and keeps a persistent transaction log to han-
dle device and network failures.

The Diamond cloud consists of front-end servers and
back-end storage servers, which together provide durable
storage and reliable notifications for reactive transactions.
Front-end servers are scalable, stateless nodes that pro-
vide LIBDIAMOND clients access to Diamond’s back-end
storage, which is partitioned for scalability and replicated
(using Viewstamped Replication (VR) [58]) for fault toler-
ance. LIBDIAMOND clients could directly access back-end
storage, but front-end servers give clients a single connec-
tion point to the Diamond cloud, avoiding the need for
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them to authenticate with many back-end servers or track
the partitioning scheme.

4.2 rmap and Language Bindings

Diamond language bindings implement the library of reac-
tive data types for apps to use as rmap variables. Diamond
interposes on every operation to an rmapped variable. Dur-
ing a transaction, LIBDIAMOND collects an operation set
for DOCC to later check for conflicts. Reads may hit the
LIBDIAMOND client-side cache or require a wide-area ac-
cess to the Diamond cloud, while writes (and increments,
appends, etc.) are buffered in the cache until commit.

4.3 Transaction Coordination Overview

Figure 5 shows the coordination needed across LIBDIA-
MOND clients, front-end servers and back-end storage for
both read-write and reactive transactions. This section
briefly describes the transaction protocols.

Diamond uses timestamp ordering to enforce isolation
across LIBDIAMOND clients and back-end storage; it as-
signs every read-write transaction a unique commit times-
tamp that is provided by a replicated timestamp service
(tss) (not shown in Figure 4). Commit timestamps reflect
the transaction commit order, e.g., in strict serializability
mode, they reflect a single linearizable ordering of com-
mitted, read-write transactions. Both Diamond’s client-
side cache and back-end storage are multi-versioned using
these commit timestamps.

4.3.1 Running Distributed Transactions

Read-write and reactive transactions execute similarly;
however, as Section 5 relates, reactive transactions can
commit locally and often avoid wide-area accesses alto-
gether. We lack the space to cover Diamond’s transaction
protocol in depth; however, it is similar to Spanner’s [17]
with two key differences: (1) Diamond uses DOCC for
concurrency control rather than a locking mechanism, and
(2) Diamond uses commit timestamps from the timestamp
service (tss) rather than TrueTime [17].

As shown in Figure 5 (left), transactions progress
through two phases, execution and commit. During the
execution phase, LIBDIAMOND runs the application code
in the transaction closure passed into txn execute. It runs
the code locally on the LIBDIAMOND client node (i.e., not
on a storage node like a stored procedure).

The execution phase completes when the application
exits the transaction closure or calls txn commit explic-
itly. Reactive transactions commit locally; for read-write
transactions, LIBDIAMOND sends the operation sets to the
front-end server, which acts as the coordinator for a two-
phase commit (2PC) protocol, as follows:

1. It sends Prepare to all participants (i.e., partitions
of the Diamond back-end that hold records in the
operation sets), which replicate it via VR.
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Figure 5: Diamond transaction coordination. Left: Alice exe-
cutes a read-write transaction that reads A and writes B. Right:
Bob registers a reactive transaction that reads B (we omit the
txn id). When Alice commits her transaction, the back-end
server publishes the update to the front-end, which pushes the
notification and the update to Bob’s LIBDIAMOND, which can
then re-execute the reactive transaction locally.

2. Each participant runs a DOCC validation check (de-
scribed in Section 5); if DOCC validation succeeds,
the participant adds the transaction to a prepared list
and returns true; otherwise, it returns false.

3. As an optimization, the front-end server concurrently
retrieves a commit timestamp from the tss.

4. If all participants respond true, the front-end sends
Commits to the participants with the commit times-
tamp; otherwise, it sends Aborts. Then, it returns the
transaction outcome to the LIBDIAMOND client.

When the client receives the response, it logs the transac-
tion outcome and invokes the transaction callback.

4.3.2 Managing Reactive Transactions

As shown in Figure 5 (right), when an application registers
a reactive transaction, the LIBDIAMOND client: (1) gives
the reactive transaction a txn id, (2) executes the reactive
transaction at its latest known timestamp, and (3) sends
the txn id, the timestamp, and the read set in a Register

request to the front-end server. For each key in the read
set, the front-end server creates a Subscribe request and
sends those requests, along with the timestamp, to each
key’s back-end partition.

For efficiency, LIBDIAMOND tracks read set changes
between executions and re-registers. We expect each reac-
tive transaction’s read set to change infrequently, reducing
the overhead of registrations; if it changes often, we can
use other techniques (e.g., map objectrange described in
Section 6.2) to improve performance.

When read-write transactions commit, Diamond exe-
cutes the following steps for each updated record:

1. The leader in the partition sends a Publish request
with the transaction’s commit timestamp to each
front-end subscribed to the updated record.

2. For each Publish, the front-end server looks up the
reactive transactions that have the updated record in
their read sets and checks if the commit timestamp
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is bigger than the last notification sent to that client.
3. If so, the front-end server sends a Notify request to

the client with the commit timestamp and the reactive
transaction id.

4. The client logs the notification on receipt, updates its
latest known timestamp, and re-executes the reactive
transaction at the commit timestamp.

For keys that are updated frequently, back- and front-end
servers batch updates. Application clients can bound the
batching latency (e.g., to 5 seconds), ensuring that reactive
transactions refresh at least once per batching latency
when clients are connected.

4.3.3 Handling Failures

While both the back-end storage and tss are replicated us-
ing VR, Diamond can suffer failures of the LIBDIAMOND

clients or front-end servers. On client failure, LIBDIA-
MOND runs a client recovery protocol using its transaction
log to ensure that read-write transactions eventually com-
mit. For each completed but unprocessed transaction (i.e.,
in the log but with no outcome), LIBDIAMOND retries the
commit. If the cloud store has a record of the transaction,
it returns the outcome; otherwise, it re-runs 2PC. For each
reactive transaction, the application re-registers on recov-
ery. LIBDIAMOND uses its log to find the last timestamp at
which it ran the transaction.

Although front-end servers are stateless, LIBDIAMOND

clients must set up a new front-end server connection
when they fail. They use the client recovery protocol to
do this and re-register each reactive transaction with its
latest notification timestamp. Front-end servers also act
as coordinators for 2PC, so back-end storage servers use
the cooperative termination protocol [11] if they do not
receive Commit requests after some timeout.

5 Wide-area Optimizations
This section discusses Diamond’s optimizations to reduce
wide-area overhead.

5.1 Data-type Optimistic Concurrency Control

Diamond uses an optimistic concurrency control (OCC)
mechanism to avoid locking across wide-area clients. Un-
fortunately, OCC can perform poorly across the wide area
due to the higher latency between a transaction’s read
of a record and its subsequent commit. This raises the
likelihood that a concurrent write will invalidate the read,
thereby causing a transaction abort. For example, to in-
crement a counter, the transaction reads the current value,
increments it, and then commits the updated value; if an-
other transaction attempts the same operation at the same
time, an abort occurs.

DOCC tackles this issue in two ways. First, it uses fine-
grained concurrency control based on the semantics of
reactive data types, e.g., allowing concurrent updates to
different list elements. Second, it uses conflict-free data

Table 4: DOCC validation matrix. Matrix shows whether the
committing transaction can commit (C) or must abort (A) on
conflicts. Each column is further divided by the isolation level
(RC=read committed, SI=snapshot isolation, SS=strict serializ-
ability). Commutative CRDT operations have the same outcome.

read
write

C

read
RC SI SS

write
RC SI SS

CRDT op
RC SI SS

C C C C A C C A
C C A C A A C A A

CRDT op C C A C A A C C C

Prepared
Commiting

Op
Op

Isolation Level

types with commutative operations, such as counters and
ordered sets. As noted in Section 4.3.1, LIBDIAMOND col-
lects an operation set for every data type operation during
the transaction’s execution phase. For each operation, it
collects the key and table. It also collects the read version
for every Get, the written value for every Put, the index
(e.g., list index or hash table key) for every collection op-
eration, and the diff (e.g., the increment value or the insert
or append element) for every commutative CRDT oper-
ation. We show in Section 6 that although fine-grained
tracking slightly increases DOCC overhead, it improves
overall performance.

Using operation sets, DOCC runs a validation proce-
dure that checks every committing transaction for poten-
tial violations of isolation guarantees. A conflicting access
occurs for an operation if the table, key, and index (for
collection types) match an operation in a prepared trans-
action. For a read, a conflict also occurs if the latest write
version (or commutative CRDT operation) to the table,
key, and index is bigger than the read version. For each,
DOCC makes an abort decision, as noted in Table 4.

Since transactions that contain only commutative oper-
ations can concurrently commit, DOCC can allow many
concurrent transactions that modify the same keys. This
property is important for workloads with high write con-
tention, e.g., the Twitter “like” counter for popular celebri-
ties [36]. Further, because Diamond runs read-only and
reactive transactions in serializable snapshot mode, they
do not conflict with read-write transactions with commu-
tative CRDT operations.

5.2 Client Caching with Bounded Validity Intervals

Some clients in the wide-area setting may occasionally be
unavailable, making it impossible to atomically invalidate
all cache entries on every write to enforce strong order-
ing. Diamond therefore uses multi-versioning in both the
client-side cache and back-end storage to enforce a global
ordering of transactions. To do this, it tags each version
with a validity interval [62], which begins at the start
timestamp and is terminated by the end timestamp. In
Diamond’s back-end storage, a version’s start timestamp
is the commit timestamp of the transaction that wrote the
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Figure 6: Diamond versioned cache. Every Diamond client
has a cache of the versions of records stored by the Diamond
cloud storage system. The bottom half shows versions for three
keys (A, B and C), and the top half shows cached versions of
those same keys. Note that the cache is missing some versions,
and all of the validity intervals in the cache are bounded.

version. The end timestamp is either the commit times-
tamp of the transaction writing the next version (making
that version out-of-date) or unbounded for the latest ver-
sion. Figure 6 shows an example of back-end storage with
three keys.

On reads, the Diamond cloud tags the returned value
with a validity interval for the LIBDIAMOND client-side
cache. These validity intervals are conservative; back-end
storage guarantees that the returned version is valid at
least within the validity interval, although it may be valid
beyond. If the version is the latest, back-end storage will
bound the validity interval by setting the end timestamp to
the latest commit timestamp of a transaction that accessed
that record. For example, in Figure 6, the validity interval
of the latest version of B and C are capped at timestamp 16
in the cache, while they are unbounded in storage. Most
importantly, bounded validity intervals eliminate the need
for cache invalidations because the version is always valid
within the validity interval. Diamond eventually garbage
collects cached versions as they become too outdated to
use.

5.3 Data Push Notifications

Reactive transactions require many round-trips to syn-
chronously fetch each update; these can be expensive in
a wide-area network. Fortunately, unlike stand-alone no-
tifications services (e.g., Thialfi), Diamond has insight
into what data the application is likely to access when
the reactive transaction re-executes. Thus, Diamond uses
data push notifications to batch updates along with notifi-
cations, reducing wide-area round trips.

When front-end servers receive Publish requests from
back-end storage, they perform a snapshot read of every
key in the reactive transaction’s last read set at the up-
dating transaction’s commit timestamp, then piggyback
the results with the Notify request to the LIBDIAMOND

client. LIBDIAMOND re-executes the reactive transaction
at the commit timestamp; therefore, if its read set has
not changed, then it requires no additional wide-area re-

Table 5: Application comparison. Diamond both reduces code
size and adds to the application’s ACID+R guarantees.

Application LoC w/o
Diamond

LoC w/
Diamond

LoC
Saved

Added

A C I D R

100 Game 46 34 26% DDD

Chat Room 355 225 33% DDD D

PyScrabble 8729 7603 13% D D

Twitter clone 14278 12554 13% DDD

quests. Further, since the reads were done at the commit
timestamp, LIBDIAMOND knows that the transaction can
be serialized at that timestamp and committed locally,
eliminating all wide-area communication.

6 Experience and Evaluation
This section evaluates Diamond with respect to both pro-
gramming ease and performance. Overall, our results
demonstrate that Diamond simplifies the design of re-
active applications, provides stronger guarantees than ex-
isting custom solutions, and supports automated reactivity
with low performance overhead.

6.1 Prototype Implementation

We implemented a Diamond prototype in 11,795 lines
of C++, including support for C++, Python and Java lan-
guage bindings on both x86 and ARM. The Java bindings
(939 LoC) use javacpp [39], and the Python bindings
(115 LoC) use Boost [2]. We cross-compiled Diamond
and its dependencies for Android using the NDK stan-
dalone toolchain [29]. We implemented most Diamond
data types, but not all are supported by DOCC. Our cur-
rent prototype does not include client-side persistence and
relies on in-memory replication for the back-end store;
however, we expect disk latency on SSDs to have a low
performance impact compared to wide-area network la-
tency, with NVRAM reducing storage latency even further
in the future.

6.2 Programming Experience

This section evaluates our experience in building new
Diamond apps, porting existing apps to Diamond, and cre-
ating libraries to support the needs of reactive programs.

6.2.1 Simplifying Reactive Applications

To evaluate Diamond’s programming benefits, we imple-
mented applications both with and without Diamond. Ta-
ble 5 shows the lines of code for both cases. For all of the
apps, Diamond simultaneously decreased program size
and added important reliability or correctness properties.
We briefly describe the programs and results below.

100 Game. Our non-Diamond version of the 100 game
is based on the design in Figure 1. For simplicity, we used
Redis [67] for both storage and notifications. We found

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    731



several data races between storage updates and notifica-
tions when running experiments for Figure 9, forcing us
to include updates in the notifications to ensure clients did
not read stale data from the store. The Diamond version
eliminated these bugs and the complexities described in
Section 2 and guaranteed correctness with atomicity and
isolation; in addition, it reduced the code size by 26%.

Chat Room. As another simple but representative ex-
ample of a reactive app, we implemented two versions of
a chat room. Our version with explicit data management
used Redis for storage and the Jetty [40] web server to
implement a REST [25] API. It used POST requests to send
messages and polled using GET requests for displaying the
log. This design is similar to that used by Twitter [80, 35]
to manage its reactive data (e.g., Twitter has POST and
GET requests for tweets, timelines, etc.). The Diamond
version used a StringList for the chat log, a read-write
transaction to append messages, and a reactive transac-
tion to display the log. In comparison, Diamond not only
eliminated the need for a server or storage system, it also
provided atomicity (the Redis version has no failure guar-
antees), isolation (the Redis version could not guarantee
that all clients saw a consistent view of the chat log), and
reactivity (the Redis version polled for new messages).
Diamond also shrunk the 355-line app by 130 lines, or
33%.

PyScrabble and Diamond Scrabble. To evaluate the
impact of reactive data management in an existing appli-
cation, we built a Diamond version of PyScrabble [16],
an open-source, multiplayer Scrabble game. The original
PyScrabble does not implement persistence (i.e., it has no
storage system) and uses a centralized server to process
moves and notify players. The centralized server enforces
isolation and consistency only if there are no failures. We
made some changes to add persistence and accommodate
Diamond’s transaction model. We chose to directly rmap

the Scrabble board to reactive data types and update the
UI in a reactive transaction, so our implementation had to
commit and share every update to make it visible to the
user; thus, other users could see the player lay down tiles
in real-time rather than at the end of the move, as in the
original design. Overall, our port of PyScrabble to Dia-
mond removed over 1000 lines of code from the 8700-line
app (13%) while transparently simplifying the structure
(removing the server), adding fault tolerance (persistence)
and atomicity, and retaining strong isolation.

Twimight and Diamond Dove. As another modern re-
active application, we implemented a subset of Twitter us-
ing an open-source Android Twitter client (Twimight [79])
and a custom back-end. The Diamond version eliminated
much of the data management in the Twimight version,
i.e., pushing and retrying updates to the server and main-
taining consistency between a client-side SQLite [71]

cache and back-end storage. Diamond directly plugged
into UI elements and published updates with read-write
transactions. As a result, it simplified the design, elim-
inated 1700 lines (13%) from the 14K-line application,
transparently provided stronger atomicity and isolation
guarantees, and eliminated inconsistent behaviors (e.g., a
user seeing a retweet before the original tweet).

6.2.2 Simplifying Reactive Libraries

In addition to simplifying the design and programming
of reactive apps, we found that Diamond facilitates the
creation of general-purpose reactive libraries. As one ex-
ample, Diamond transactions naturally lend themselves
to managing UI elements. For instance, a check box usu-
ally rmaps a Boolean, re-draws a UI element in a reac-
tive transaction, and writes to the Boolean in a read-write
transaction when the user checks/unchecks the box. We
implemented a general library of Android UI elements, in-
cluding a text box and check box. Each element required
under 50 lines of code yet provided strong ACID+R guar-
antees. Note that these elements tie the user’s UI to shared
data, making it impossible to update the UI only locally;
for example, if a user wants to preview a message before
sharing it with others, the app must update the UI in some
other way.

For generality, Diamond makes no assumptions about
an app’s data model, but we can build libraries using
rmap for common data models. For example, we imple-
mented object-relational mapping for Java objects whose
fields were Diamond data types. Using Java reflection,
rmap object maps each Diamond data type inside an ob-
ject to a key derived from a base key and the field’s name.
We also support rmap for subsets of Diamond collections,
e.g., rmap range for Diamond’s primitive list types, which
binds a subset of the list to an array, and rmap objectrange,
which maps a list of objects using rmap object.

These library functions were easy to build (under 75
lines of code) and greatly simplified several applications;
for example, our Diamond Twitter implementation stores
a user’s timeline as a LongList of tweet ids and uses
map objectrange to directly bind the tail of the user’s
timeline into a custom Android adapter, which then plugs
into the Twimight Android client and automatically man-
ages reactivity. In addition to reducing application com-
plexity, these abstractions also provide valuable hints for
prefetching and for how reactive transaction read sets
might change. Overall, we found Diamond’s program-
ming model to be extremely flexible, powerful, and easy
to generalize into widely useful libraries.

6.3 Performance Evaluation

Our performance measurements demonstrate that Dia-
mond’s automated data management and strong consis-
tency impose a low performance cost relative to custom-
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Figure 7: Peak throughput for explicit data management vs
Diamond. We compare an implementation using Redis and Jetty
to Diamond at different isolation levels with and without DOCC.
We label the ordering guarantees provided by each configuration.
In all cases, the back-end servers were the bottleneck.

written applications. Using transactions with strong isola-
tion properties lowers throughput, as one would expect.
We also show that Diamond’s DOCC improves perfor-
mance of transactional guarantees, and that data push no-
tifications reduce the latency of wide-area transactions.
Finally, our experiments prove that Diamond has low over-
head on mobile devices and can recover quickly from
failures.

6.3.1 Experimental Setup

We ran experiments on Google Compute Engine [30] us-
ing 16 front-end servers and 5 back-end partitions, each
with 3 replicas placed in different availability zones in
the same geographic region (US-Central). Our replica-
tion protocol used adaptive batching with a batch size
of 64. We placed clients in a different geographic re-
gion in the same country (US-East). The latency between
zones was ≈1 ms, while the latency between regions was
≈36 ms. For our mobile device experiments, we used
Google Nexus 7 LRX22G tablets connected via Wi-Fi
and, for desktop experiments, we used a Dell workstation
with an Intel Xeon E5-1650 CPU and 16 GB RAM.

We used a benchmark based on Retwis [45], a Redis-
based Twitter clone previously used to benchmark transac-
tional storage systems [84]. The benchmark was designed
to be a representative, although not realistic, reflection of
a Twitter-like workload that provides control over con-
tention. It ran a mix of five transactions that range from
4-21 operations, including: loading a user’s home time-
line (50%), posting a tweet (20%), following a user (5%),
creating a new user (1%), and “like”-ing a tweet (24%).
To increase contention, we used 100K keys and a Zipf
distribution with a co-efficient of 0.8.

6.3.2 Overhead of Automated Data Management

For comparison, we built an implementation of the Retwis
benchmark that explicitly manages reactive data using
Jetty [40] and Redis [67]. The Redis WAIT command offers
synchronous in-memory replication, which matches Dia-
mond’s fault-tolerance guarantees but provides no opera-
tion or transaction ordering [66]. The leftmost bar in Fig-
ure 7 shows the peak Retwis throughput of 31K trans./sec.
for the Redis-based implementation, while the second bar

in Figure 7 shows the Diamond read-committed (RC)
version, whose performance (30.5K trans./sec.) is nearly
identical. Unlike the Redis-based implementation, how-
ever, the Diamond benchmark provides strong consistency
based on VR, i.e., it enforces a single global order of op-
erations but not transactions. The Diamond version also
provides all of its reactivity support features. Diamond
therefore provides better consistency properties and sim-
plifies programming at little additional cost.

As we add stronger isolation through transactions,
throughput declines because two-phase commit requires
each back-end server to process an extra message per
transaction. As the graph shows, snapshot isolation (SI)
and strict serializability (SS) reduce throughput by nearly
50% from RC. The graph also shows SI and SS both with
and without DOCC; eliminating DOCC hurts SS more
than SI (27% vs. 13%) because SI lets transactions with
read-write conflicts commit (leading to write skew).

From this experiment, we conclude that Diamond’s
general-purpose data management imposes almost no
throughput overhead. Also, achieving strong transactional
isolation guarantees does impose a cost due to the more
complex message protocol required. Depending on the
application, programmers can choose to offset the cost
by allocating more servers or tolerate inconsistencies that
result from weaker transactional guarantees.

6.3.3 Benefit of DOCC

DOCC’s benefit depends on both contention and trans-
action duration. To evaluate this effect, we measured the
throughput improvement of DOCC for each type of Retwis
transaction with at least one CRDT operation (Figure 8).

The add user and like transactions are short and thus
unlikely to abort, but they still see close to a 2x improve-
ment. add follower gets a larger benefit (4x) because it is
a longer transaction with more commutative operations.
Even get timeline, a read-only transaction, gets a tiny im-
provement (2.5%) due to reduced load on the servers from
aborting transactions. Further, because get timeline runs
in serializable snapshot mode, post tweet transactions
can commit concurrently with get timeline transactions.

The post tweet transaction appends a user’s new tweet
to his timeline and his followers’ home timelines (each
user has between 5 and 20 followers). If a user follows
a large number of people that tweet frequently, conven-
tional OCC makes it highly likely that a conflicting Append

would cause the entire transaction to fail. With DOCC, all
Appends to a user’s home timeline can commute, avoid-
ing these aborts. As a result, we saw a 5x improvement
in abort rate with DOCC over conventional OCC for
post tweet, leading to a 25x improvement in throughput.
Overall, these results show that Diamond’s support for
data types in its API and concurrency control mechanism
is crucial to reducing the cost of transactional guarantees.
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Figure 9: Latency comparison for 100 game rounds with
data push notifications. Each round consist of 1 move by each
of 2 players; latency is measured from 1 client. We implemented
explicit data management and notifications using Redis and
Diamond notifications with and without batched updates.

6.3.4 Benefit of Data Push Notifications

Although Diamond’s automated data management im-
poses a low throughput overhead, it can hurt latency due
to wide-area round trips to the Diamond cloud. For exam-
ple, the latency of a Retwis transaction is twice as high for
Diamond relative to our Redis implementation because
Diamond requires two round trips per transaction, one to
read and one to commit, while Redis needs only one.

Data push notifications reduce this latency by batching
updates with reactive transaction notifications to popu-
late the client-side cache. We turned our implementation
of the 100 game from Figure 3 into a benchmark: two
players join each game, and players make a move as soon
as the other player finishes (i.e., zero “think” time). This
experiment is ideal because the read set of the reactive
transaction does not change, and it overlaps with the read
set of the read-write transaction. We also design an imple-
mentation using Redis, where notifications carry updates
to clients as a manual version of data push notifications.
We measure the latency from one player’s client for each
player to take a turn or for one round of the game. Fig-
ure 9 shows that data push notifications reduce the overall
latency by almost 50% by eliminating wide-area reads for
both the reactive and read-write transactions in the game.
As a result, Diamond has 30% lower latency and stronger
transactional guarantees than our Redis implementation.

6.3.5 Impact of Wide-area Storage Server Failures

Failures affect the latency of both reactive and read-write
transactions. To measure this impact, we used the same
100 game workload and killed a back-end server during
the game. To increase the recovery overhead, we geo-
replicated the back-end servers across Asia, US-Central
and Europe, while clients remained in US-East.
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Figure 10: Latency of 100 game rounds during failure. We
measured the latency for both players to make a move and killed
the leader of the storage partition after about 15 seconds. Af-
ter recovery, the leader moves to another geographic region,
increasing overall messaging latency on each move.

Figure 10 shows the latency of each round. Note that
the latency is higher than that in the previous experiment
because the VR leader has to wait for a response from a
quorum of replicas, which take at least 100 ms, and up
to 150 ms, to contact. About 15 seconds into the game,
we kill the leader in US-Central, switching it to Europe.
The latency of each round increases to almost 4 seconds
afterwards: the latency between the front-end servers and
the leader in Europe increases to 100 ms, and the latency
from the leader to the remaining replica in Asia increases
to 250 ms. Despite this, the round during the failure takes
only 7 seconds, meaning that Diamond can detect the
failure and replace the leader in less than 3 seconds.

6.3.6 End-user Application Latency

To evaluate Diamond’s impact on the user experience, we
measure the latency of user operations in two apps from
Section 6.2 built with and without Diamond. PyScrabble
is a desktop application, while our Chat Room app runs
on Android. The ping times to the Diamond cloud were
≈38 ms on the desktop and ≈46 ms on the Android tablet.

Figure 11 (left) shows two operations for PyScrabble:
MakeMove commits a transaction that updates the user’s
move, and DisplayMove includes MakeMove plus the no-
tification and reactive transaction to make it visible. Com-
pared to the original PyScrabble, Diamond’s latency is
slightly higher (9% and 16%, respectively). Figure 11
(right) shows operations for the Chat Room on an Android
tablet. ReadLog gets the full chat log, and PostMessage gets
the chat log, appends a message, and commits it back. The
Diamond version is a few percent faster than the Redis
version because it runs in native C++, while the Redis
version uses a Java HTTP client. Overall, we found the
latency differences between Diamond and non-Diamond
operations were not perceivable to users.

7 Related Work
Diamond takes inspiration from wide-area storage sys-
tems, transactional storage systems and databases, reac-
tive programming, distributed programming frameworks,
shared memory systems and notification systems.

Several commercial platforms [51, 26, 60] provide
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Figure 11: End-user operation latency for PyScrabble and
Chat Room on Diamond and non-Diamond implementa-
tions.

an early form of reactive data management without dis-
tributed transactions. Other open source projects [38, 55,
21, 59, 70] have replicated the success of their commercial
counterparts. Combined, they comprise a mobile back-end
market of $1.32 billion dollars [49].

However, these products do not meet the requirements
of reactive applications, still requiring programmers to ad-
dress failures and race conditions. Meteor [51] lets client-
side code directly access the database interface. How-
ever, because it uses existing databases (MongoDB [53],
and most recently, Postgres [63]) that do not support dis-
tributed transactions and offer weak consistency guar-
antees by default, programmers must still reason about
race conditions and consistency bugs. Parse [60] and
Firebase [26] similarly enable clients to read, write, and
subscribe to objects that are automatically synchronized
across mobile devices; however, these systems offer no
concurrency control or transactions. As demonstrated by
these Stack Overflow questions [56, 50], programmers
find this to be a significant issue with these systems. Di-
amond addresses this clear developer need by providing
ACID+R guarantees for reactive applications.

There has been significant work in wide-area storage
systems for distributed and mobile applications, including
numerous traditional instantiations [77, 42, 57] as well
as more recent work [18, 9, 74, 61, 75]. Many mobile ap-
plications today use commercial storage services such as
Dropbox and others [23, 22, 37], while users can also em-
ploy revision-based storage (e.g., git [27]). Applications
often combine distributed storage with notifications [3, 6].
As discussed, these systems help with data management,
but none offers a complete solution.

Diamond shares a data-type-based storage model with
data structure stores [67, 68]. Document stores (e.g., Mon-
goDB [53]) support application objects; this prevents
them from leveraging semantics for better performance.
These datastores, along with more traditional key-value
and relational storage systems [15, 8, 44, 76], were not
designed for wide-area use although they could support
reactive applications with additional work.

Reactive transactions in Diamond are similar to
database triggers [47], events [14], and materialized
views [12]. They differ from these mechanisms because
they modify local application state and execute applica-
tion code rather than database queries that update storage

state. Diamond’s design draws on Thialfi [3]; however,
Thialfi cannot efficiently support data push notifications
without insight into the application’s access patterns.

DOCC is similar to Herlihy [32, 31] and Weihl’s [83]
work on concurrency control for abstract data types. How-
ever, Diamond applies their techniques to CRDTs [69]
over a range of isolation levels in the wide area. DOCC
is also related to MDCC [43] and Egalitarian Paxos [54];
however, DOCC uses commutativity for transactional con-
currency control rather than Paxos ordering and supports
more data types. DOCC extends recent work on software
transactional objects [33] for single-node databases to the
wide area; integrating the two would let programmers
implement custom data types in Diamond.

Diamond does not strive to support a fully reactive,
data-flow-based programming model, like functional re-
active or constraint-based programming [82, 7]; however,
reactive transactions are based on the idea of change
propagation. Recent interest in reactive programming
for web client UIs has resulted in Facebook’s popular
React.js [64], the ReactiveX projects [65], and Google’s
Agera[28]. DREAM [48], a recently proposed, distributed
reactive platform, lacks transactional guarantees. Sap-
phire [85], another recent programming platform for mo-
bile/could applications, does not support reactivity, dis-
tributed transactions, or general-purpose data manage-
ment.

8 Conclusion
This paper described Diamond, the first data management
service for wide-area reactive applications. Diamond in-
troduced three new concepts: the rmap primitive, reactive
transactions, and DOCC. Our evaluation demonstrated
that: (1) Diamond’s programming model greatly simpli-
fies reactive applications, (2) Diamond’s strong transac-
tional guarantees eliminate data race bugs, and (3) Dia-
mond’s low performance overhead has no impact on the
end-user.
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