
freedom.js: an Architecture for
Serverless Web Applications

William Scott, Raymond Cheng, Arvind Krishnamurthy, Thomas Anderson
University of Washington

ABSTRACT
Delivering web software as a service has grown into a
powerful paradigm for deploying a wide range of Internet-
scale applications. However for end-users, accessing soft-
ware as a service is fundamentally at odds with free soft-
ware, because of the associated cost of maintaining server
infrastructure. Users end up paying for the service in one
way or another, often indirectly through ads or the sale
of their private data.

In this paper, we aim to enable a new generation of
portable and free web apps by proposing an alternative
model to the existing client-server web architecture. free-
dom.js is a platform for developing and deploying rich
multi-user web apps, where application logic is pushed
out from the cloud and run entirely on client-side browsers.
By shifting the responsibility of where code runs, we can
explore a novel incentive structure where users power ap-
plications with their own resources, gain the ability to
control application behavior and manage privacy of data.
For developers, we lower the barrier of writing popu-
lar web apps by removing much of the deployment cost
and making applications simpler to write. We provide
a set of novel abstractions that allow developers to au-
tomatically scale their application with low complexity
and overhead. freedom.js apps are inherently sandboxed,
multi-threaded, and composed of reusable modules.

We demonstrate the flexibility of freedom.js through
a number of applications that we have built on top of
the platform, including a messaging application, a so-
cial file synchronization tool, and a peer-to-peer (P2P)
content delivery network (CDN). Our experience shows
that we can implement a P2P-CDN with 50% fewer lines
of application-specific code in the freedom.js framework
when compared to a standalone version. In turn, we in-
cur an additional startup latency of 50-60ms (about 6%
of the page load time) with the freedom.js version, with-
out any noticeable impact on system throughput.

1. INTRODUCTION
In the last decade, we have seen an incredible evolu-

tion of web technologies and the way software is cre-
ated, distributed, and consumed. Software as a service
(SaaS) allows software developers to provide complete
fully-featured applications over the Internet, accessed by
users using a thin client and often just a web browser.
Client-side code in this model is generally only respon-

sible for presenting responsive user interfaces, basic of-
floading, and funneling events between the server and
user. This is in stark contrast to native software which
is sold, licensed, or given away for free to run entirely
on an end user’s machine. The portability of web apps1

has turned the Web into one of the most successful write-
once-run-(almost)-everywhere platforms for software.

However, treating software as a service has profound
implications on the nature of software applications. The
majority of application logic is run on servers controlled
by the software provider, which means that it is impos-
sible for users to change or even to determine what the
software does. Service providers have a unique ability
to modify their software at any time and leverage their
users’ data at will. Users pay for this server infrastructure
through their private data, advertisements, or purchases,
many times unknowingly.

In this paper, we introduce an alternative model to the
datacenter-centric cloud model now prevalent in indus-
try. In freedom.js, web apps are written to run entirely
in the browser and in many cases do not require a server
presence at all. Instead, back end application logic is per-
formed on the client where it can directly interact with
the user interface (UI) in a manner that is consistent with
existing UI frameworks. In order to match the portabil-
ity of existing web apps, our framework is built in the
language of the Web, JavaScript, such that freedom.js
apps can run in unmodified browsers without installing
any native software. Ultimately, freedom.js apps look
no different to the end-user than existing web apps, but
we believe that the benefits of writing applications in the
freedom.js framework (privacy, low barrier to entry, re-
silient connectivity, and composable services) are desir-
able properties to both developers and users.

Building serverless web apps is a challenging premise.
Modern web apps depend on servers for a variety of pur-
poses, such as highly available access to persistent data,
centralized configuration, and security. In order to re-
design web apps without dependence on servers, this func-
tionality would need to be rewritten to function entirely
on the client. However, client-side JavaScript lacks the
centralized world view and many of the fundamental prim-
itives needed to provide useful services. Much like op-
erating systems, browsers provide local abstractions like

1Following modern convention that ‘application’ and ‘app’ are
interchangeable, we use ‘app’ throughout for consistency.

1

persistent storage to a hard drive, but lack higher-level
abstractions that facilitate multi-user multi-device inter-
actions needed by modern web apps. Because browser
development has been driven by client-server applica-
tions, these are abstractions that browsers are not mo-
tivated to provide by themselves. Further, developers
often organize client-side code by simply including ex-
isting scripts, a model that is reminiscent of statically
linking libraries into a global address space with a sin-
gle thread of execution. Studies have shown that there
are limitations to code complexity [32] and security [24]
when web apps are written in this fashion.

By tackling these challenges, we hope to once again
enable free software in the age of the Web, where users
can freely download, modify, and execute the code for a
multitude of interactive web apps. The current model
makes the developer responsible for scaling their ser-
vice to handle customer traffic, an expensive proposi-
tion. Developers are often pressured to convert to a com-
mercial model earlier in the development process than
they might otherwise, with obvious consequences to end-
user privacy and encouraging walled gardens. As one of
the few exceptions, Wikipedia spent over $1.8 million in
2011 for server operating costs, all supported by dona-
tions [7]. In the freedom.js model, developers can write
and distribute free software without worrying about how
to maintain and scale application infrastructure. free-
dom.js applications are designed to naturally self-scale
with the number of users accessing the application. By
doing so, we hope to lower the barrier to entry and fos-
ter a healthy community of new user-supported free web
software, in the spirit of the Linux community.

In order to achieve this goal, freedom.js exposes new
abstractions for client-to-client resource usage. Browsers
already provide the underlying facilities needed to build
such an alternative architecture. In particular, new HTML5
standards provide mechanisms to store large quantities
of data, and WebRTC provides a mechanism for direct
network communication between two instances of a web
app. Using these primitives, freedom.js provides a num-
ber of fundamental building blocks for free apps, includ-
ing replicated storage, user rendezvous, and network trans-
port. In order to promote secure and reusable code, our
platform (a) decomposes complex web applications into
separated modules of functionality, (b) provides a se-
cure runtime for executing modules concurrently in iso-
lated sandboxes, (c) dynamically links shared modules,
and (d) offers a number a vital primitives to support the
breadth of applications we are used to today. Fundamen-
tally, freedom.js represents a new way to think about how
web applications are structured and executed, treating the
browser as a modern networked operating system.

We have built a number of applications on top of free-
dom.js, including a messaging application, a social file

synchronization tool, a P2P content delivery network (CDN),
and an anti-censorship overlay network. Through these
applications, we demonstrate that freedom.js apps are re-
sponsive and achieve acceptable performance. We also
compare two implementations of our P2P-CDN, one us-
ing freedom.js and one without, and show that our plat-
form incurs a small overhead in startup latency in return
for drastic reductions in code complexity. We were able
to implement our P2P-CDN on freedom.js with just 311
lines of code, 50% smaller than our stand-alone imple-
mentation. In practice on a standard laptop, we expe-
rienced just 50-60ms of additional startup latency with
the freedom.js version (about 6% of the page load time)
without any noticeable impact on system throughput.

In the rest of this paper, we illustrate the following
contributions:

• We designed the freedom.js platform to make it easy
for developers to write rich multi-user web apps that
run entirely in the browser.

• We demonstrate that it is possible and practical to
achieve client-only solutions for a number of web
apps. We implemented a number of applications on
top of freedom.js and discuss how existing applica-
tions can be built in this new programming model
today.

We next explain the goals of freedom.js (Section 2)
and its design and implementation (Section 3). We then
describe our representative applications and evaluate their
performance (Section 4). We finish with a discussion of
future work (Section 5), and how freedom.js compares to
existing systems (Section 6).

2. BACKGROUND
The freedom.js approach to building web applications

has the potential for high scalability and low cost in com-
parison to conventional web services. By revisiting the
underlying architecture of web app design, we can of-
fer new answers for reliability, extensibility, and trans-
parency. We designed freedom.js to meet the following
goals:

Simple and Extensible: A primary goal of freedom.js
is to make applications simple to write and deploy. By
adopting the web browser as the common medium, free-
dom.js apps are immediately portable across a wide range
of operating systems and devices. Web developers can
use their existing knowledge of JavaScript to develop ap-
plications, leveraging the Web’s built-in security model,
rich markup language, and direct compatibility with ex-
isting web services. In the spirit of JavaScript, our sys-
tem is as extensible as the applications it enables, allow-
ing developers to extend freedom.js to suit their needs.
The abstractions provided by our system encourage the

2

use of or standardization on a set of low-level interopera-
tion standards, ultimately leading to simpler and cleaner
application code. freedom.js also fits into the model-
view-controller model of building applications, allowing
many existing web applications to maintain their current
client-side code when migrating to freedom.js. By re-
moving the requirement that web developers host their
own web apps, we further lower the barrier to entry.

Composable applications: The current web architec-
ture does not lend itself to ubiquitous web app compos-
ability. Existing web stacks are large vertical silos, where
the presentation and data are closely intertwined in server-
side application logic. Browsers enforce the “same ori-
gin policy” of isolation, which has pushed web APIs up
to the application level such that each service controls
a custom Javascript API. System-level abstractions such
as pipes are fundamentally at odds with the web’s current
architecture. freedom.js imposes a new model of build-
ing applications that facilitates code sharing and reuse.
Developers are encouraged to write applications as a col-
lection of small modules that each encompass a piece
of functionality. Applications are then assembled with
the support of many modules, mirroring the use of third
party libraries in server applications. For example, our
anti-censorship tool and file-sharing applications use the
same network transport implementations. If a file-sharing
application develops a new network transport with im-
proved performance, the anti-censorship tool immediately
sees the improvement as well.

Make scaling automatic: In existing web services, web
developers use expensive and complex datacenter con-
figurations to provide scalability and reliability. They
are responsible for provisioning resources to meet de-
mand and respond to service disruptions. freedom.js pro-
motes a different model where instead of writing a cen-
tral application with access to global state, applications
must be decomposed into per-user behavior that runs lo-
cally on the client’s machine. Thus, applications natu-
rally scale as each participant contributes sufficient re-
sources to handle their usage costs.

Give users more control: Existing web apps are an all-
or-nothing proposition. If a user wants to use the appli-
cation, they inherently agree to let the service do what it
wants, including use an arbitrary number of third-party
delegates. Because the application logic of freedom.js
apps runs entirely on the client’s machine, our model
gives clients the ability to define fine-grained security
policies for data management, hardware access, and sys-
tem services to constrain misbehavior. We also give DIY
users the ability to replace or extend arbitrary modules
in freedom.js apps. For example, an advanced user could
modify how and where their data is stored. While this

could potentially break expected application behavior,
we believe it is important to give users the ability to con-
trol the applications they are powering.

While freedom.js enables a multitude of new applica-
tions on the Web, it is important to note that it is not a
complete replacement for datacenter services and not all
web apps can be written in our platform. We focus on
multi-user applications that do not need to face the phys-
ical world and do not require computation on data across
multiple users. For example, shopping websites (with
physical fulfillment centers) and VoIP to PSTN gateways
still require web servers for those interfaces. Similarly
search, multi-user analytics, and collaborative filtering
are hard problems to solve in a distributed setting. While
we do not claim that freedom.js provides new insights
to these issues, we make it easy to hook into existing
web services. We believe that freedom.js encompasses
a large, high impact space, and has the ability to repli-
cate functionality from websites like Facebook, Twitter,
Wikipedia, YouTube, Blogger, and Craigslist, as well as
to enable previously unseen functionality.

3. DESIGN AND IMPLEMENTATION
freedom.js was designed for easy deployment and to

fit with users’ existing perceptions of how web apps op-
erate. As such, users access freedom.js compatible appli-
cations identically to any other web service. freedom.js
apps can be written as websites on a web server2 or as
packaged apps distributed on the Chrome WebStore or
Firefox Marketplace. freedom.js apps are particularly
well suited for ‘offline’ usage. Moreover, the look and
feel of freedom.js applications is no different from tra-
ditional web apps, and developers are encouraged to use
their favorite visual toolkits to create user interfaces. free-
dom.js modules are designed to fit easily into most exist-
ing JavaScript user interface frameworks.

While no limits are imposed on the user interface, the
global structure of freedom.js applications will look fun-
damentally different from existing cloud-based apps. In
the next few sections, we describe how an application is
structured and how development occurs in freedom.js.

3.1 System Model

3.1.1 Overview
In existing cloud-based frameworks, developers have

an immense amount of flexibility in how they write their
applications. As long as the server speaks HTTP to the
client and delivers a valid HTML document for the client
to render, the developer can run any server software stack

2The HTML5 Application Cache allows hosted applications to
take advantage of freedom.js’s benefits even in the face of an
overloaded server.

3

Application

SQL
Database DHT

Social
Network

API
OpenID
Server

Cloud

UI

Client

UI

Client

UI

Client

UI

Client

(a) Cloud-based applications currently place most application
logic on web servers with access to global state which directly in-
teract with other services. Client browsers usually only deal with
rendering the user interface.

Client
UI

Application

Storage API Transport APIIdentity API

Client
UI

Application

Storage API Transport APIIdentity API

Client
UI

Application

Storage API Transport APIIdentity API

DHT

SQL
Database

Social
Network

API

OpenID
Server

Client
UI

freedom.js
Application

Storage API Transport APIIdentity API

(b) freedom.js applications are browser-centric. Each application
contains the logic for a single user and accesses low-level services,
such as storage, through the freedom.js API. Each browser com-
municates with each provider individually.

Figure 1: A comparison of the global architecture of cloud-based apps and freedom.js apps

they want. Figure 1a shows the layout of a typical cloud-
based web application. The majority of application logic
resides on cloud servers, which act as a single central-
ized instance with a global view of system state. The
client is responsible only for visual presentation. The
servers can run on any software stack that it chooses (e.g.
Linux/Apache/PHP) and the servers communicate with
other servers to provide necessary components. For ex-
ample, the application may communicate with a MySQL
server or a Cassandra cluster for access to persistent stor-
age. The application may communicate with OpenID
servers or other social networks to identify users. Each
of these interfaces is defined by the web service, which
makes it difficult to switch between services, such as in
the case of migrating data between different databases.

In contrast, freedom.js applications are written in the
language of the web, JavaScript, and are confined to the
APIs provided by freedom.js and the browser. Each ap-
plication runs locally on the client machine and interacts
with the freedom.js platform using a defined set of APIs.
Applications are restricted from accessing other services
outside of these APIs. The platform provides APIs for
manipulating freedom.js modules, persistent storage, net-
work transport, social identity, visual output, and task
management. All of these APIs can be implemented by
a variety of providers. We define a provider as a free-
dom.js module that declares that it implements a particu-
lar freedom.js API. For example, the transport API could
be backed by a module that used the WebRTC standard
or through privileged network sockets. The freedom.js
platform includes a set of built-in providers, and devel-

opers can bundle their own providers for use with their
application. Figure 1b shows the layout of a typical free-
dom.js application. Note that while the application logic
resides entirely on the client, providers may include a
server component. For example, one built-in identity
provider communicates with XMPP services3 to retrieve
a user’s list of friends. In many cases, freedom.js appli-
cations may not require any server components at all.

3.1.2 System Components
A freedom.js app is composed of a number of isolated

freedom.js modules. Modules are instantiated at load
time, and are not dynamically created or destroyed. Each
module is defined by a manifest, as shown in Figure 2b.
The manifest file contains the module’s name, descrip-
tion, version, script location, required permissions, and a
list of dependencies. Thus, running modules form a tree
of dependencies, with a communication channel between
each parent-child pair. Our manifest convention is com-
mon for JavaScript applications, and compatible mani-
fests are used to describe Node.js libraries, CommonJS
packages, and Chrome applications.

When a freedom.js app is loaded, each node in the
module dependency tree is instantiated and executed in a
sandboxed web worker thread. Web workers are a browser
feature allowing for multiple concurrent threads of exe-
cution to execute simultaneously in isolation. In particu-
lar, web workers do not provide access to the DOM, and
can be restricted to prevent other external communica-
tions. In other words, there is no shared state and each

3XMPP is the standard instant messaging protocol.

4

1 <html>
2 ...
3 <script type="text/javascript"
4 src="freedom.js"
5 data-manifest="manifest.json">
6 </script>
7 <script type="text/javascript">
8 var sendButton = document.getElementById(‘send’);
9 sendButton.addEventListener(‘click’, function() {

10 window.freedom.emit(‘send’);
11 }, true);
12 window.freedom.on(‘recv’, function(msg) {
13 var messageLabel = document.getElementById(‘

message’);
14 messageLabel.innerHTML = msg;
15 });
16 </script>
17 ...
18 </html>

index.html
(a) Initializing a freedom.js module involves specifying an entry point
manifest file. The outer script can then communicate with the module
using message passing on freedom.emit(. . .) and freedom.on(. . .).

1 {
2 "name": "FreeChat",
3 "description": "A Secure, WebRTC based chat client",
4 "version": 0.2.1,
5 "main": "chat.js",
6 "dependencies": {
7 "identity": "bundledIdentity/manifest.json"
8 },
9 "permissions": [

10 "identity",
11 "transport"
12]
13 }

manifest.json
(b) Each module must have a manifest file, which describes script location,
module dependencies, and needed permissions.

Figure 2: Integration of freedom.js code into a webpage

module runs concurrently in a separate isolated JavaScript
runtime. If a module requests a permission, such as “trans-
port”, it is given a transport object, which it can use for
API calls. Modules may also claim to implement an API
by specifying a “provides” manifest key.

Development begins by adding the freedom.js library
to an applications source code directory, or linking to a
known freedom.js implementation—the same process as
any other JavaScript library. As shown in Figure 2a, the
HTML page must include the freedom.js library script
and point towards the root module manifest file. There
can only be one root module manifest file, which serves
as the root module in the dependency tree. The page
can communicate with the root module by calling win-
dow.freedom.emit(. . .) and window.freedom.on(. . .). The
emit/on event syntax is a common JavaScript conven-
tion found in Dojo, Node, and YUI. In the chat example
shown here, the page listens for “recv” events and dis-
plays incoming messages in a message label. When the

app3app2

Browser

freedom.js Manager

app1

index.html
freedom.jsscript.js

module1 module2
app2

module
app3

module

Figure 3: Modules run in sandboxed web workers, which
can interact with the outer HTML page using message
passing. The freedom.js Manager contains an identi-
cal execution environment for freedom.js modules, aug-
mented with additional privileged providers. The arrow
indicates the installation of an unprivileged module into
the freedom.js Manager.

“send” button is clicked, the current message is emitted
to the root freedom.js module.

Figure 3 shows a diagram of how freedom.js code lives
and executes in a web app. By default, each API is
backed by a provider that can run entirely in the con-
text of an unprivileged webpage. For example, the de-
fault storage provider leverages LocalStorage, which al-
lows websites to store up to 5MB of persistent data. The
default transport provider uses the WebRTC API to pro-
vide direct peer-to-peer channels. These are capabilities
that any standard website can utilize. However, an ap-
plication may desire access to privileged APIs such as a
storage provider with larger storage quotas. To address
this scenario, we introduce the freedom.js Manager. free-
dom.js Manager is a browser extension that does not con-
tain any native code and runs within the browser’s secu-
rity model. When a freedom.js application needs access
to higher privileged providers, it checks to see if the free-
dom.js Manager has been installed. If not, freedom.js
displays a UI to ask users to install the extension, which
only needs to be installed once per client machine, re-
gardless of the number of freedom.js applications. When
the freedom.js Manager is installed, trusted freedom.js
modules are executed in the extension’s runtime environ-
ment, and the freedom.js client library becomes a proxy
for message passing to the now migrated module. Each
module is versioned and updated upon access by an up-
dated application.

Once installed, freedom.js Manager gives application
modules access to a larger set of providers. These providers
generally rely on access to privileged extension API’s
such as larger storage primitives, web requests to arbi-
trary hosts, and raw network sockets. Some of the priv-
ileged providers that we have built include an XMPP
client for identity, TCP sockets for transport, and a non-
space-constrained key-value store for storage. Develop-

5

User Interface Handlers

freedom.js Backend Mist Module

Storage
API

Identity
API

Distributed Hash Table
Provider

XMPP
Provider

Transport
API Transport APIStorage

API

LocalStorage
Provider

WebRTC
Provider

Sockets
Provider

Post

News Feed
………………………..
………………………..
………………………..

postTweet(…)
retrieveTweets(...)

set(…)
get(…)

set(…)
get(…)

name(..)
buddylist(..)

send(…)
recv(…)

freedom.js Modules

Figure 4: The layout of a microblogging service on free-
dom.js. Modules compose to create higher-level ser-
vices. We use a local storage provider and peer-to-peer
transport to support a DHT module. The microblog back
end then uses the DHT in conjunction with an XMPP
client to power the user interface.

ers must request the proper permissions from the user
for access to privileged providers and users are given
the ability to deny the request for any particular API or
provider. In this case, freedom.js automatically degrades
service to an unprivileged provider. Additionally, mod-
ules installed to freedom.js Manager have the ability to
run even when the user closes the application using them.
This is highly valuable for providers that rely on peers for
availability and notifications.

This division of labor incentivizes participation from
both developers and users. Developers are incentivized
to use freedom.js in order to lower their operating costs
and gain access to peer resources. freedom.js also gives
developers access to APIs to build novel applications not
otherwise possible on the web, such as privacy-preserving
services and anonymizing overlay networks. On the other
hand by installing freedom.js Manager, users are given
direct control over how their resources are used with a
permissions model defined in Section 3.4 and access to a
novel set of services.

3.1.3 A Microblog Example
Consider a microblogging web app, such as Identi.ca

or Twitter. Figure 4 describes the layout and module in-
terfaces for such an app. A developer would program
the front end HTML/CSS/JS in the same manner as they
would now using a model-view-controller framework. How-

ever, instead of syncing the data model to the cloud us-
ing HTTP requests, we communicate with the root free-
dom.js module that runs the microblog back end, which
exports a similar interface as a web server would (post-
Tweet(. . .), retrieveTweets(. . .), etc.).

The microblog back end module interacts with an iden-
tity provider that stores the user’s identity and a list of
identities to follow. The microblog also interacts with
a highly available distributed hash table (DHT) storage
provider to store tweets publicly and retrieve other users’
tweets. The DHT provider in turn further uses the Local-
Storage storage provider and WebRTC transport provider
to implement a DHT such as Kademlia or Chord.

In the case where freedom.js Manager is not installed,
the LocalStorage provider would be limited to just 5MB
of storage per user. Thus, the total capacity of the DHT
is limited. Since the uptime of DHT peers is limited to
the amount of time that a user has the tab open, addi-
tional replication is required. When freedom.js Manager
is installed on a client, the LocalStorage provider gains
access to a larger amount of storage and the DHT mod-
ule can run even when the application is inactive, im-
proving capacity and robustness of the application. The
developer can incentivize use of the freedom.js Manager
by offering discriminating features based on the resource
contributions of the user.

3.2 Module Management
In order to support freedom.js as a broadly applica-

ble framework, freedom.js must offer isolation between
components such that applications behave correctly, even
when they are accessed in a web browser with no trust of
either the application or framework. We opt to work with
the existing web model, which allows freedom.js to take
full advantage of the constrained design space, and use
HTML5 message passing, web workers, and sandbox-
ing to allow multiple modules to coexist peacefully. To
achieve this, we implement solutions for launching mod-
ules, event handling, installation of applications, and a
design for long running tasks.

3.2.1 Launching Modules
Modules are designed to be inherently isolated with

only message passing mechanisms to communicate be-
tween modules and the outer page. This design allows
for both reuse and run-time swapping of freedom.js providers
like storage and rendezvous. In our framework, each
module is globally identified by the canonical URL of
the respective manifest. In the manifest, a freedom.js
module can describe any other components it depends
on. These dependencies may be described in one of two
ways: as a ‘static’ dependency, or as a ‘dynamic’ per-
mission. Static dependencies describe a specific other
manifest, which will be executed in a separate sandbox,

6

but will be accessible through a generic message pass-
ing channel. The two code bases are assumed to co-
operate, and will be treated as having the same level of
permissions - freedom.js requires an application request
all permissions used by its dependencies. Dynamic per-
missions, in contrast, interact not through an arbitrary
message passing interface, but through a freedom.js de-
fined API. This API describes the semantics of methods,
events, and properties of an object exposed to the caller,
which must be implemented by a provider. Permissions
for a provider accessed through a defined API may be
higher than those of a consuming application, and will
be presented to the user separately. Some examples of
freedom.js defined APIs are storage and P2P transport.
For both static and dynamic dependencies, all processes
required for a freedom.js application to execute are de-
fined at the start of execution by the manifest, and each
code module is loaded into a separate, sandboxed, web
worker.

3.2.2 Events
In order to allow freedom.js modules to communicate

with each other, a freedom object is provided to each
module. This object exposes channels to dependent mod-
ules. Each channel provides a bidirectional JSON trans-
port between modules, and upon this abstraction we offer
an event metaphor for code convenience. For dependen-
cies on freedom.js API providers, a predefined interface
is provided, and the freedom.js platform filters channel
messages to conform to that interface. This does not pre-
vent misuse of the interface, but serves as an encourage-
ment to use the defined API, in order to promote com-
posability.

3.2.3 Installation
The freedom.js library alone does not provide any ad-

ditional access to hardware to an untrusted web appli-
cation. However, designing applications in this way pro-
vides a natural mechanism for providing a fine-grain trust
model for applications with freedom.js Manager. Browsers
have previously provided only a coarse-grained trust model
for web content: either navigate to a page and assume
no trust of the content, or install a browser extension
through a high-friction process. In contrast, freedom.js
aims to allow for smaller, commonly desired, granules of
trust to be allocated through a light-weight mechanism.
As such, users can delegate specific freedom.js modules
access to additional permissions, such as allowing access
to additional storage to a storage provider, by installing
it to the freedom.js Manager.

The freedom.js Manager polices this privilege escala-
tion. This extension exposes its presence to freedom.js
applications, and can spawn web worker tasks for privi-
leged providers. Using existing browser security mech-

anisms, and in particular the use of sandboxed frames
to drop permissions within the extension, we can ensure
that untrusted code code run within the extension is not
granted permissions besides those assigned by the user.
Trusted APIs granted to a freedom.js module are exposed
via a channel on the freedom object identical to those
of other predefined APIs. This design allows the Man-
ager to only be installed once, and specific freedom.js
applications and providers can then be granted additional
fine grain permissions through UI reflective of the danger
associated with those permissions.

3.2.4 Module Lifetime
While an application is open, all modules are guar-

anteed to be instantiated and available for communica-
tion. Module lifecycle outside of active use is designed
in the spirit of mobile applications and existing browser
extensions. If an application has been installed to the
freedom.js Manager, but is not accessed by any active
application, it may be shutdown to free resources. The
developer may listen for load and unload events to han-
dle state and maintain consistency. An installed module
that has been shut down can be awoken by one of three
triggers

• The user opens an application using the module.

• An alarm scheduled by the module fires.

• The module receives a message from a dependent
module, such as the notification to the DHT module
when a peer tries to retrieve an element.

Thus, the developer does not need to reason about the
memory consumption of modules. The freedom.js Man-
ager automatically allocates memory and instantiates mod-
ules as necessary for the liveness of any freedom.js ap-
plication.

3.3 System Calls
Each freedom.js module can request the permission to

use a particular API in its manifest. The system calls ac-
cessible to modules are divided into three APIs: identity,
storage and transport. Figure 5 enumerates the currently
supported system calls. In Section 5 we discuss future
APIs that will be added to the freedom.js platform.

3.3.1 Identity Management
The identity provider serves two purposes. It provides

mechanisms for a user to manage its own identity and
social network. It also provides a low-bandwidth un-
reliable message passing mechanism. For example, an
XMPP service fits well into this criteria. Users have a
global identifier and a list of friends. Users can also pass
messages between friends in real-time, which makes the
system useful as a rendezvous point. An application may
choose to aggregate multiple identity providers to help

7

Social Storage Transport
Name Type Description Name Type Description Name Type Description
login method Login to network clear method Clear store open method Open connection

getProfile method Get user profile get method Get key send method Send data
sendMessage method Send a message remove method Remove key close method Close connection

logout method Logout set method Set key/value onMessage event Incoming data
onChange event Roster change onChange event Value change onClose event Connection closed
onMessage event Incoming message

onStatus event Network status

Figure 5: freedom.js APIs for interacting with social, storage, and transport providers. We support method calls, as
well as asynchronous event messages from the provider.

users coalesce otherwise disjoint social networks.
While, it is natural to create identity providers that

tie a user’s social network into freedom.js, the identity
API can also be used to provide generic rendezvous. For
example in one of our applications, a custom identity
provider assigns each peer a pseudonym and manipulates
what gets returned as the user’s friends in order to prop-
erly match content producers and consumers.

3.3.2 Self-Scaling Storage
The goal of the storage API is to provide a simple key-

value interface to a multitude of persistent back ends.
To facilitate desired properties by the developer, storage
providers are annotated with properties. These proper-
ties describe whether the storage is a temporary cache,
persistent on the local machine, or distributed and highly
available. The properties also describe the scope of vis-
ibility. A storage provider can operate in a single global
namespace across all applications and users, a global names-
pace only amongst users of the application, a global names-
pace among different applications of the same user, or
a local namespace specific to the instance. Lastly, the
properties define the lifetime of data and the storage quota.

As such, different providers can provide various sub-
sets of these properties. A freedom.js app can also ref-
erence multiple storage providers by requesting storage
with different properties. For example, it may use a provider
backed by local memory as a temporary cache, a provider
backed by LocalStorage for device settings, and a provider
backed by a reliable DHT for publishing to other users.

3.3.3 Transport
The transport API abstracts a variety of network layer

mechanisms for establishing direct peer-to-peer connec-
tions between browsers. The reference implementation
includes providers backed by WebRTC, native sockets,
and Flash RTFMP. In typical operation, a client first calls
create(. . .), which returns an offer object containing a
session description and the client’s location. The client
then sends the offer to the peer it wants to connect to us-
ing the identity API as a rendezvous service. The peer
accepts the offer and generates a response, which is sent

back to and accepted by the originating client.
Within this abstraction, the transport provider may be

implemented to use ICE/STUN/TURN to traverse NATs.
Transport could be relayed on an multi-hop overlay net-
work for anonymization, or masked using an obfuscation
protocol. Similarly to the storage API, providers can de-
clare specific properties on the type of transport. A de-
veloper can request a transport that is reliable, provides
in-order delivery, and/or encrypted.

3.4 Permissions Management
A developer always has the ability to use any API,

backed by a provider that works entirely in an unpriv-
ileged web context. For example, transport is always
available through an unprivileged WebRTC provider. In
the manifest of a module, developers can request access
to privileged freedom.js APIs, such as native sockets or
larger storage quota. The developer also has the ability
to insert hints for preferred providers or providers that
hold certain properties, like reliable transport. When a
freedom.js module is installed into the freedom.js Man-
ager, the user is presented with a dialog to override in-
dividual permissions. For example, a user can enable
the privileged storage providers, but turn off the access
to privileged transport providers for an application. In
the case where a user denies a permission, the module
will see the default unprivileged provider. Users can sub-
sequently modify permissions at any time in the free-
dom.js Manager. This same interface allows users to
swap out one provider for another, giving them ultimate
control over application functionality. While this opens
the possibility of breaking application functionality, cor-
rect distributed services must already handle individual
node failures, limiting impact to the individual user’s in-
stance.

4. APPLICATIONS
In order to evaluate the performance and simplicity of

freedom.js, we implemented a number of applications on
top of our platform. In this section, we divide the appli-
cations into three broad classes: multi-user sharing, con-
tent delivery and overlay networks. These applications

8

were built on a shared set of freedom.js APIs, allowing
for a high degree of code reuse, such that in all cases the
majority of application-specific code was user interface
logic. Through these applications, we also demonstrate
the use of freedom.js Manager for access to trusted APIs.

4.1 Multi-User Sharing
freedom.js naturally enables a broad space of multi-

user interactions. The identity API provides built-in ac-
cess to the notion of a user’s identity and social net-
work. The storage API can be used as a reliable mail-
box abstraction between users and high-bandwidth inter-
actions can occur directly between peers using transport
providers. All of the following applications were written
such that they are possible to run without servers. An
application may contact a third-party server to satisfy a
particular identity provider, such as to connect to an ex-
isting Facebook profile. This allows freedom.js to handle
existing network effects, where one group of users may
be connected through Facebook, while another, overlap-
ping, set of users communicates primarily through AIM
or Windows messenger.

4.1.1 Chat
Using the freedom.js APIs, it was trivial to build a

chat application that automatically hooked into a vari-
ety of existing chat networks. We ported the existing
node-xmpp library, written for the Node.js server-side
JavaScript runtime, to work in Chrome as an identity
provider. Users can link an arbitrary number of XMPP
accounts across various servers, such as ones from Google,
Facebook and Apple. In our implementation, we used the
identity provider merely as a signalling channel for es-
tablishing direct peer-to-peer connections using the We-
bRTC transport provider. Messages were then sent di-
rectly between peers. This minimal chat application con-
sisted of 143 lines of code, all used to describe the visual
layout and respond to incoming and outgoing message
events.

4.1.2 File Synchronization
Agora is a social file synchronization tool that offers

similar file-sharing capabilities to Dropbox. This ap-
plication makes use of all three of the freedom.js APIs
described above: Identity is used to find friends and to
create shared folders. Transport is used to synchronize
files between participants, so that the different users see
a consistent view of shared files. Storage is used to keep
a local copy of shared data. These three freedom.js APIs
made it simple to implement this system, with module
boundaries naturally lining up with class interfaces.

Agora consists of 3 major components, a front end
user interface (UI), the root Agora back end module, and
an aggregate identity provider. The front end implemen-

Figure 6: Screenshot of our social file synchronization
tool. Users access and interact with the application in the
same way as traditional web app.

tation was constructed using the Backbone.js, a popular
framework for designing interactive UIs. We modified
the sync primitive, originally used to synchronize the lo-
cal data model with a remote server, to instead commu-
nicate with our back end module. Thus, the front end
was written essentially identical to existing web apps.
We made use of drag-and-drop APIs to allow files to be
dragged between the user’s file system and the Agora ap-
plication.

The Agora back end exposes a similar interface to what
a RESTful web service would provide. This interface in-
cludes calls such as retrieveFiles, putFile, getFile, create-
SharedFolder, and modifySharedFolder. In order to store
more than 5MB, the limit for unprivileged providers, the
storage provider requests access to the freedom.js Man-
ager and freedom.js automatically handles the interaction
between front and back end. The back end also manages
automatic file synchronizations of shared folders when
a user is online. We use established vector clock tech-
niques [10] to synchronize files between users. Note that
we can reuse the same identity and transport providers
as our chat program to find friends and communicate be-
tween peers.

4.1.3 Photo and Video Sharing
Using our file synchronization infrastructure, it was

easy to create an application for sharing rich media like
photos and videos. We designed a new front end inter-
face to present images and videos in a tiling layout, al-
lowing users to zoom images and play videos in place.
We reused the Agora freedom.js modules to handle stor-
age and synchronization between users. We imagine this
same back end can serve as a powerful common service
for a variety of sharing applications, such as microblogs,
blogs, and music. Users can also easily design and re-
place one front end with another, a capability difficult to
achieve in existing websites.

9

4.2 Content Delivery
The ability to communicate between peers makes the

browser a powerful platform for content delivery. Pro-
posals have been introduced for many years to leverage
users as a content delivery network (CDN) [1, 8, 39, 42].
freedom.js makes it easy to research, experiment, and
design new forms of content delivery tailored towards
bulk data, streaming media, privacy, or security. Exist-
ing server-based websites generally use CDNs to deliver
static content like videos. We implemented a simple P2P
content delivery network called InstaCDN on top of free-
dom.js. For comparison, we reimplemented the same
design as a standalone JavaScript library without free-
dom.js.

With a number of InstaCDN microbenchmarks, we
aim to show that designing applications in freedom.js
produces code that is clean, simple, and reasonably per-
formant. Our implementation with freedom.js was less
than half the size of the stand-alone version. Our ex-
periments were conducted using Chrome 27 on a 1.8
GHz Apple laptop. We found that loading the freedom.js
library added an additional 50-60ms of startup latency
and the two versions had no considerable difference in
throughput.

4.2.1 InstaCDN Design
In InstaCDN, a central server keeps track of recent

clients that download each image. Thus, the server acts
as a global tracker of image resources. A developer that
wants to use InstaCDN loads a special library into their
source code and annotates images by specifying a ‘data-
src’ attribute. Annotated images indicate to the library
that these resources should be fetched from peers and
should only be retrieved from the server if no clients
have the resource. In the freedom.js version of this ap-
plication, an outer script searches the DOM for anno-
tated images and requests these resources from a back
end module. The back end module implements a sim-
ple fetch method, where images are fetched based on a
canonical URL. We wrote a custom identity provider to
interface with the central tracker. Each client is identi-
fied by a globally unique pseudonym and reports their
currently cached resources to the tracker. In this case
when a client requests a resource, the ‘roster’ returned by
the server is the set of clients that have recently cached
desired resources. This server then acts as a signaling
channel for establishing direct peer-to-peer connections
using the transport provider. In the InstaCDN version
without freedom.js, we moved all of the back end appli-
cation logic into the outer page context.

4.2.2 Code Complexity
Figure 7 shows the lines of code for our two imple-

mentations of InstaCDN. The freedom.js platform causes

File LOC

With freedom.js

outerpage.js 52
instacdn-manifest.json 14
instacdn.js 185
identity-manifest.json 10
identity.js 50
Total 311

Without freedom.js instacdn.js 718
Total 718

Figure 7: Our freedom.js implementation of InstaCDN
is decomposed into relatively small modules of function-
ality. In total, our freedom.js version is less than half the
size of our stand-alone version without freedom.js.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

C
D

F

Total Page Load Time (ms)

Seed Image from Server

without Mist
with Mist

Figure 8: When fetching images from servers using the
InstaCDN library, our webpage loaded 60ms slower with
the freedom.js implementation when compared to an im-
plementation implemented on raw JavaScript APIs.

application logic to be divided into discrete modules. This
design pattern allowed us to easily decompose our ap-
plication into individual services, and improved testabil-
ity. Even with the additional manifest files, our free-
dom.js implementation was less than half the length of
the standalone version. With freedom.js, we were able to
take advantage of built-in transport providers and mes-
sage passing primitives for connecting components. In
the implementation without freedom.js, we had to re-
implement much of the boiler plate code involved with
establishing WebRTC connections. Without isolation prim-
itives, a bug can bring down the entire page, as opposed
to just a single web worker.

4.2.3 Startup Latency
In this experiment, we wanted to quantify the addi-

tional startup latency for loading a freedom.js app. The
application was served from a web server running on the
local machine to approximate a locally stored applica-
tion. We ran our central tracker in a separate cloud-based
service with a 75ms round-trip time from the evaluation
client. We also stored the seed image in a cloud-based
service, where an HTTP GET for the image took ap-

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

C
D

F

Total Page Load Time (ms)

Fetch Image from Peer

Local (w/o Mist)
Local (w/ Mist)
Remote (w/o Mist)
Remote (w/ Mist)

Figure 9: When fetching images from peers using the In-
staCDN library, the additional latency overhead incurred
by freedom.js was 6% higher than a comparable imple-
mentation on native JavaScript APIs.

proximately 80ms. Figure 8 and 9 show the end-to-end
latency of loading an InstaCDN enabled page with a sin-
gle image, measured as the time from page request to
complete rendering on screen, which includes the image
fetch. As shown in Figure 8 when the image is fetched
from the server, the median page load time is 330ms. The
freedom.js page loads in 391ms. The extra 61ms is con-
sistent with the overhead of starting a separate JavaScript
VM in an isolated web worker when loading the free-
dom.js library.

Figure 9 compares the cost of serving content between
peers on a local LAN and with that of different resi-
dences in the same city. When InstaCDN fetches from
peers, we find that the end-to-end load time increases to
530ms without freedom.js and 584ms with freedom.js.
In other words, page load times suffer 193ms of over-
head in end-to-end latency. We found this to be caused
by the multiple round trips currently used to initiate a
WebRTC connection between peers, which is not neces-
sary when fetching directly from a server. WebRTC data
channels on Chrome are being actively developed and
we anticipate this performance to improve steadily as the
technology matures.

When we fetch data from a remote peer on a cable con-
nection we found additional page load times proportional
to the network latency between peers as expected. These
numbers were in line with the latencies found by [42].
While transport setup is only one component of page
load time, it does impose a significant overhead. An
important benefit of the freedom.js Manager is to allow
peer connections to remain established across page loads,
so that subsequent pages on a domain can skip the peer-
establishment process. Note that the additional overhead
of starting the freedom.js platform represents only 6% of
total latency for fetching remote images with InstaCDN.

Figure 10 shows the latency breakdown of a page load.

 0

 100

 200

 300

 400

 500

 600

Server
w/o Mist

Server
w/ Mist

Peer
w/o Mist

Peer
w/ Mist

Image Source

Page Fetch
InstaCDN Ready
Rendezvous
Resource Fetch

Figure 10: Breakdown of components of page load time.
The freedom.js library takes on average 57ms to load be-
fore modules can begin to run. Fetching from peers is
over twice as expensive as fetching from servers due to
the signaling needed to establish a session.

The solid bar represents the time to retrieve the page
and begin rendering. For the freedom.js version, loading
the freedom.js library takes an additional 57ms before
modules can begin running, represented by the second
checkered bar. Each version then communicates with
the tracker to determine if any peers have the resource
cached, represented by the dotted bar. Finally, the image
is fetched from either the server or peer, represented by
the striped bar. Note that peer-to-peer image fetches take
considerably longer than fetches from the server. We at-
tribute this latency to the session setup. WebRTC incurs
multiple round-trips of communication to establish an
agreement and potentially traverse NATs. Loading free-
dom.js incurs a small overhead when compared to the
full page load time. It is also important to note that due
to the realtime nature of modern rendering engines, web-
pages will not block on image fetches. The webpage will
become responsive as soon as the document is loaded and
the appropriate JavaScript handlers are loaded.

4.2.4 Performance Benchmarks
Figure 11 shows the throughput in terms of images per

second that a peer using InstaCDN can serve to other
peers. For implementations with and without freedom.js,
the throughput peaks at around 6 concurrent clients. We
attribute this to the relatively expensive process of ses-
sion establishment between peers, which occurs before
each image fetch. Due to this artifact of the WebRTC im-
plementation, performance will be drastically improved
if freedom.js Manager kept connections open once es-
tablished. Note that the relative overhead of freedom.js
module isolation is negligible in comparison to the other
costs of establishing peer-to-peer communication.

4.3 Overlay Networks

11

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10

T
h
ro

u
g
h
p
u
t
(i
m

a
g
e
s
/s

e
c
)

Number of concurrent clients

without Mist
with Mist

Figure 11: Throughput of a InstaCDN peer serving im-
ages to other peers. Our current implementation can only
support on the order of 6 concurrent clients fetching im-
ages. Note that the relative overhead of freedom.js mod-
ules is negligible compared to the overhead in establish-
ing WebRTC communications.

A final class of applications we built on the freedom.js
platform are based on overlay communication between
users. Communication between freedom.js users using
the transport API serves as a foundation for more ad-
vanced overlay structures, such as anonymization net-
works. Users can tunnel traffic through their friends or
through users found through other identity providers.

4.3.1 Social Proxy
uProxy is a social web proxy for Chrome built entirely

in JavaScript. Users are presented with a list of friends
and can ask friends to act as private web proxies. We
make use of the same identity providers from our social
messaging application. To support uProxy, we imple-
mented a SOCKS5 proxy entirely in JavaScript as a free-
dom.js module and use the transport API to communicate
between users. uProxy can be used as an anti-censorship
tool for friends to help each other bypass censors. This
tool can also be used to route around Internet failures [9].

4.3.2 Multiple Vantage Points
Research has shown that network and service providers

have been found to modify web content for a variety of
reasons. Reports have shown entities involved in price
discrimination [30], censorship, and filtering on mobile
networks [40]. Using the uProxy network, we can route
traffic through multiple vantage points on the Internet
and detect inconsistencies. Inconsistencies are then re-
ported back to the user, who may choose to access par-
ticular domains through different routes.

4.4 Developer Experience
We gathered experience surveys from five develop-

ers that used freedom.js to build the applications above.

From their feedback, we found points that validated ele-
ments of our design and new ways to improve the free-
dom.js development experience. For developers with ex-
perience with JavaScript packages, such as the ones used
by node.js and browser extensions, defining manifests
and modules in freedom.js was an easy transition.

The main difficulty developers had was in adapting
to freedom.js’s mechanism for inter-module communica-
tions. In our implementation, we only allowed messages
to be passed between modules. In the future, we may al-
low a developer to define a RPC-like interface to a mod-
ule, facilitating easier ways to reason about application
behavior. Developers found the complexity of handling
all possible message reorderings a complex task. The
synchronization extension for Backbone.js made it dras-
tically easier to reason about behavior without a custom
messaging protocol. We plan to create similar compati-
bility layers with other popular JavaScript frameworks.

The debugging process for freedom.js apps can also be
improved. Browser tooling and debugging support has
made tremendous advances in recent years, but debug-
ging of web workers is less refined. freedom.js replicates
the browser console object to facilitate logging, but we
found that it was easy for debugging messages to over-
whelm the developer. In the future, we plan to improve
console debugging, and output stack traces of errors.

5. DISCUSSION

5.1 New APIs
In Section 3.3 we lay out a core subset of APIs in use

by freedom.js providers. Due to space constraints, we do
not describe in detail the API for rendering views on a
screen (i.e. for authentication with an identity provider).
In the future, we can imagine a number of new APIs that
can be added to freedom.js to promote additional inter-
faces needed in distributed systems. These include an
interface for maintaining consensus between nodes and
one to facilitate resource trading. One could imagine
sharing computational, storage, or network resources be-
tween users in order to achieve certain properties like
high availability on Agora. We could also explore the
use of virtual currencies or a reputation system.

5.2 Multi-device
As internet usage increasingly shifts to mobile plat-

forms, managing multiple devices appropriately becomes
critical to the freedom.js story. Mobile browsers have
committed to developing feature-parity with their desk-
top cousins, with some technical features (like WebRTC)
already available on mobile devices, and others (like browser
extensions) expected to arrive soon. As such, we ex-
pect mobile devices to act as first-class freedom.js de-
vices, but with less availability and resources to con-

12

tribute. We expect per-user storage providers to emerge,
and for users who rely primarily on mobile devices for
freedom.js usage to be able to acquire resources from an
always on desktop or cloud providers in place of doing
all work locally on the mobile device. This could either
be fully abstracted through a resource sharing provider
implementation, or simply by renting a VM in which a
headless browser acts as a persistent agent for the user.

6. RELATED WORK
Providing serverless interactive applications has been

a longstanding goal of the research community, and free-
dom.js draws on a large corpus of previous work:
Scalable storage: Reliable scalable storage is a core
component to any distributed application. Distributed
hash tables (DHTs) have been developed as a scalable
mechanism to store data across peers in a network [29,
37]. Various DHT designs have been proposed to im-
prove robustness of the storage system by tackling prob-
lems such as Sybils [25], consistency [22], churn [26],
and locality [20]. freedom.js takes advantage of this work
by allowing any DHT to be written as a module and sub-
sequently provide storage for other applications. DHTs
have been used as a core building block for a variety of
serverless P2P applications such as microblogging [36,
41], social networks [11,17], and content publishing [15],
and we aim to enable similar applications to be easily
written on top of freedom.js.
Peer-to-peer platforms Platforms for writing peer-to-
peer (P2P) applications have existed in a number of domain-
specific implementations. BitTorrent [1] has gained sig-
nificant popularity as a file-sharing protocol. A number
of BitTorrent clients support writing applications or plug-
ins to augment the file-sharing experience [6]. Tor [19] is
an anonymizing overlay that exposes arbitrary traditional
web services as anonymous hidden services within the
network. Other related work describes similarly hiding
existing web services within a blocking-resistant anti-
censorship tool [35]. freedom.js is unique in that it aims
to provide a general platform for writing web applica-
tions entirely in the browser, without native software.
Previous proposals have called for using P2P network
stacks to help open source web applications scale for
free [14]. freedom.js expands on this vision by speci-
fying an API and an execution environment that expose
useful primitives and sandbox isolation.
Alternative web architectures: freedom.js takes inspi-
ration from a number of recent advances in web-related
research. Systems have been proposed to use P2P file-
transfer as a replacement for traditional content delivery
networks in the browser [1, 8, 39, 42]. We show in Sec-
tion 4 how these services could be written in freedom.js
with fewer lines of code. Tent [4] and Diaspora [2] are
two efforts to create protocols for federated social net-

work servers, much like the XMPP chat protocol. Un-
hosted [5] and BStore [12] provide a number of tools to
detach web applications from where the data is stored.
Most of these tools, such as RemoteStorage [3], can be
used as freedom.js modules.

We also take inspiration from a large background of
work in security and isolation in the web. Treehouse [24]
explores the use of WebWorkers to provide isolation be-
tween scripts within a web application, a technique simi-
larly used in our system. Tacoma [16] and Embassies [23]
are a two proposals to use client-side virtual machines to
achieve stronger isolation between web application con-
tainers, but with a higher deployment cost. Js.js [38]
sandboxes third-party scripts in a Javascript interpreter
written in Javascript. Other proposals have been incor-
porated to provide stronger isolation between web con-
tainers in the browser [13, 33].

MapJAX [31] exposes new abstractions for interact-
ing with server-side data using Javascript objects, a tech-
nique that we take inspiration from for our templated
provider interfaces. Hails [21] and DBTaint [18] inves-
tigates the use of information flow control (IFC) to pro-
tect user data from being overshared. Gibraltar [27] and
Maverick [34] are systems that further push the bound-
aries of client-side application logic by exposing hard-
ware devices to web applications. Liberated [28] is a de-
velopment environment where the server and client both
run in the browser to facilitate application debugging.
We are excited about the possibility of incorporating these
concepts, such as IFC, hardware access, and debugging
environments, in future work with freedom.js.

7. CONCLUSION
While the Web has served as a powerful medium for

deploying software at scale, its current architecture is di-
rectly at odds with enabling rich multi-user applications
that are free, easily customizable, and composable. By
taking advantage of modern advancements in browser
APIs, freedom.js provides an alternative model for build-
ing such web apps by removing servers from the equa-
tion. freedom.js apps are simple to write, easily compos-
able, automatically scale, and gives users far more con-
trol over application behavior than existing web apps.

To demonstrate that building free serverless web apps
are not only possible, but also practical, we implemented
the freedom.js platform in JavaScript. We built a mul-
titude of applications on top of freedom.js, including a
messaging application, a social file synchronization tool,
and a peer-to-peer (P2P) content delivery network (CDN).
Through microbenchmarks we show that freedom.js apps
incur minimal performance overhead, but enable drastic
reductions in code complexity. We hope that with free-
dom.js, we can support a vibrant community of free soft-
ware on the Web.

13

8. REFERENCES
[1] BitTorrent. http://www.bittorrent.com
[2] Diaspora. https:

//github.com/diaspora/diaspora
[3] RemoteStorage.

http://remotestorage.io/
[4] Tent. https://tent.io
[5] Unhosted. https://unhosted.org/
[6] Vuze Plugins.

https://www.vuze.com/plugins/
[7] Wikimedia Foundation Annual Report.

http://upload.wikimedia.org/
wikipedia/commons/4/48/WMF_AR11_
SHIP_spreads_15dec11_72dpi.pdf
2011.

[8] P. Aditya, M. Zhao, Y. Lin, A. Haeberlen,
P. Druschel, B. Maggs, and B. Wishon. Reliable
client accounting for p2p-infrastructure hybrids. In
Proceedings of USENIX NSDI, 2012.

[9] D. Andersen, H. Balakrishnan, F. Kaashoek, and
R. Morris. Resilient overlay networks. In
Proceedings of the eighteenth ACM symposium on
Operating systems principles, SOSP ’01, pages
131–145, New York, NY, USA, 2001. ACM.

[10] S. Balasubramaniam and B. C. Pierce. What is a
file synchronizer? In Fourth Annual ACM/IEEE
International Conference on Mobile Computing
and Networking (MobiCom ’98), Oct. 1998.

[11] S. Buchegger, D. Schiöberg, L.-H. Vu, and
A. Datta. Peerson: P2p social networking: early
experiences and insights. In Proceedings of the
Second ACM EuroSys Workshop on Social
Network Systems, pages 46–52. ACM, 2009.

[12] R. Chandra, P. Gupta, and N. Zeldovich.
Separating web applications from user data storage
with bstore. 2010.

[13] E. Y. Chen, J. Bau, C. Reis, A. Barth, and
C. Jackson. App isolation: get the security of
multiple browsers with just one. In Proceedings of
the 18th ACM Conference on Computer and
Communications Security, pages 227–238. ACM,
2011.

[14] R. Cheng, W. Scott, A. Krishnamurthy, and
T. Anderson. FreeDOM: a new baseline for the
web. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks, pages 121–126. ACM,
2012.

[15] I. Clarke, O. Sandberg, B. Wiley, and T. Hong.
Freenet: A distributed anonymous information
storage and retrieval system. In Designing Privacy
Enhancing Technologies, pages 46–66. Springer,
2001.

[16] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M.
Levy. A safety-oriented platform for web

applications. In Security and Privacy, 2006 IEEE
Symposium on, pages 15–pp. IEEE, 2006.

[17] L. A. Cutillo, R. Molva, and T. Strufe. Safebook:
A privacy-preserving online social network
leveraging on real-life trust. Communications
Magazine, IEEE, 47(12):94–101, 2009.

[18] B. Davis and H. Chen. Dbtaint: cross-application
information flow tracking via databases. In 2010
USENIX Conference on Web Application
Development, 2010.

[19] R. Dingledine, N. Mathewson, and P. Syverson.
Tor: the second-generation onion router. In
USENIX Sec., 2004.

[20] M. J. Freedman, E. Freudenthal, and D. Mazieres.
Democratizing content publication with coral.
NSDI, 2004.

[21] D. B. Giffin, A. Levy, D. Stefan, D. Terei,
D. Mazières, J. C. Mitchell, and A. Russo. Hails:
protecting data privacy in untrusted web
applications. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and
Implementation, pages 47–60, 2012.

[22] L. Glendenning, I. Beschastnikh,
A. Krishnamurthy, and T. Anderson. Scalable
consistency in scatter. In Proceedings of the
Twenty-Third ACM Symposium on Operating
Systems Principles, pages 15–28. ACM, 2011.

[23] J. Howell, B. Parno, and J. Douceur. Embassies:
Radically refactoring the web. NSDI, 2013.

[24] L. Ingram and M. Walfish.
Tingram2012treehousoreehouse: Javascript
sandboxes to help web developers help themselves.
In Proceedings of the USENIX Annual Technical
Conference, 2012.

[25] C. Lesniewski-Lass and M. F. Kaashoek. Whanau:
A sybil-proof distributed hash table. In 7th
USENIX Symposium on Network Design and
Implementation, pages 3–17, 2010.

[26] J. Li, J. Stribling, T. Gil, R. Morris, and
M. Kaashoek. Comparing the performance of
distributed hash tables under churn. Peer-to-Peer
Systems III, pages 87–99, 2005.

[27] K. Lin, D. C. J. Mickens, L. Z. F. Zhao, and J. Qiu.
Gibraltar: exposing hardware devices to web pages
using ajax. In Proceedings of the 3rd USENIX
Conference on Web Application Development,
pages 7–7. USENIX Association, 2012.

[28] D. Lipman. LIBERATED: a fully in-browser client
and server web application debug and test
environment. PhD thesis, University of
Massachusetts, 2011.

[29] P. Maymounkov and D. Mazieres. Kademlia: A
peer-to-peer information system based on the xor
metric. Peer-to-Peer Systems, pages 53–65, 2002.

14

http://www.bittorrent.com
https://github.com/diaspora/diaspora
https://github.com/diaspora/diaspora
http://remotestorage.io/
https://tent.io
https://unhosted.org/
https://www.vuze.com/plugins/
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf

[30] J. Mikians, L. Gyarmati, V. Erramilli, and
N. Laoutaris. Detecting price and search
discrimination on the internet. In Proceedings of
the 11th ACM Workshop on Hot Topics in
Networks, pages 79–84. ACM, 2012.

[31] D. Myers, J. Carlisle, J. Cowling, and B. Liskov.
Mapjax: Data structure abstractions for
asynchronous web applications. In Proceedings of
the 2007 USENIX Annual Technical Conference,
2007.

[32] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna. You are what you include:
Large-scale evaluation of remote JavaScript
inclusions. In Proceedings of the ACM Conference
on Computer and Communications Security, 2012.

[33] C. Reis and S. D. Gribble. Isolating web programs
in modern browser architectures. In Proceedings of
the 4th ACM European Conference on Computer
Systems, pages 219–232. ACM, 2009.

[34] D. W. Richardson and S. D. Gribble. Maverick:
Providing web applications with safe and flexible
access to local devices. In Proceedings of the 2011
USENIX Conference on Web Application
Development (June 2011), WebApps, volume 11,
2011.

[35] W. Scott, R. Cheng, J. Li, A. Krishnamurthy, and
T. Anderson. Blocking-resistant network services
using Unblock. Technical report, University of
Washington Computer Science and Engineering,
2014.

[36] P. St Juste, D. Wolinsky, P. O. Boykin, and R. J.
Figueiredo. Litter: A lightweight peer-to-peer
microblogging service. In Privacy, Security, Risk
and Trust (PASSAT), IEEE Third International
Conference on Social Computing (SocialCom),
pages 900–903. IEEE, 2011.

[37] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet
applications. ACM SIGCOMM Computer
Communication Review, 31(4):149–160, 2001.

[38] J. Terrace, S. Beard, and N. P. K. Katta. JavaScript
in JavaScript (js.js): Sandboxing third-party
scripts. 2012.

[39] J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and
M. J. Freedman. Bringing p2p to the web: Security
and privacy in the firecoral network. In
International Workshop on Peer-to-Peer Systems
IPTPS 2009, 2009.

[40] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang.
An untold story of middleboxes in cellular
networks. In ACM SIGCOMM Computer
Communication Review, volume 41, pages

374–385. ACM, 2011.
[41] T. Xu, Y. Chen, J. Zhao, and X. Fu. Cuckoo:

towards decentralized, socio-aware online
microblogging services and data measurements. In
Proceedings of the 2nd ACM International
Workshop on Hot Topics in Planet-scale
Measurement, page 4. ACM, 2010.

[42] L. Zhang, F. Zhou, and R. S. Alan Mislove.
Maygh: Building a CDN from client web
browsers. In In Proceedings of the 8th European
Conference on Computer Systems EuroSys, 2013.

15

	Introduction
	Background
	Design and Implementation
	System Model
	Overview
	System Components
	A Microblog Example

	Module Management
	Launching Modules
	Events
	Installation
	Module Lifetime

	System Calls
	Identity Management
	Self-Scaling Storage
	Transport

	Permissions Management

	Applications
	Multi-User Sharing
	Chat
	File Synchronization
	Photo and Video Sharing

	Content Delivery
	InstaCDN Design
	Code Complexity
	Startup Latency
	Performance Benchmarks

	Overlay Networks
	Social Proxy
	Multiple Vantage Points

	Developer Experience

	Discussion
	New APIs
	Multi-device

	Related Work
	Conclusion
	References

