
Blocking-Resistant Network Services using Unblock
Will Scott, Raymond Cheng, Arvind Krishnamurthy, Thomas Anderson

University of Washington
Abstract

The desire for uncensored access to the Internet has
motivated the development of both open proxies like Tor
and social graph-based overlays like FreeNet. However,
neither design is sufficient, as relays in open proxies are
easily exposed and blocked, and overlays based just on
social trust suffer from poor availability and performance.
In this paper, we introduce the design for a new overlay
service, Unblock, constructed from an augmented social
graph. In Unblock, multi-hop paths through social
links protect individual participants from exposure to
adversaries. Unblock achieves good performance by
introducing additional links in the network graph in a
manner that minimizes vulnerability. We analyze appro-
priate transport level techniques for such an overlay, and
demonstrate the practicality of the system for web traffic.

1 Introduction
Unfettered digital communication, as provided by the
Internet, has fundamentally changed the world in count-
less ways. Businesses, organizations, and citizens have
benefited from the Internet’s global reach. However, the
Internet was not designed to be resilient to censorship, and
governments have restricted communication to advance
their social and economic agendas [22, 36]. Worse,
network equipment providers have shown a willingness
to commoditize and profit from censorship by selling
interception and filtering devices [45].

Censorship today is more than aggressive suppression of
activists by oppressive governments. Many countries use a
variety of automated techniques to affect communications
on a wide scale. For a variety of reasons, entire domains
are regularly blocked [1], sometimes due to individual
pieces of objectionable content. Domain blocking is
very coarse-grained and often blocks access to unrelated
content for extended amounts of time. For example, in
2008 Pakistan temporarily blocked all of YouTube due
to offensive “non-Islamic” videos [58]. Other content may
be blocked to shift public perception (selectively cropping
content from someone’s news feed can significantly
alter the way they perceive the world [9, 10]) or to exert
economic pressure [13] by degrading service to foreign
competitors, enabling new forms of protectionism in the
multi-trillion dollar Internet economy.

Like many security problems, Internet censorship is
not purely technical and countries all have their own ap-
proaches to law enforcement on the Internet. We define
“hard” censorship as enforcement through judicial and
physical means, such as the prosecution of illegal activity.

In contrast, we define “soft” censorship as the removal
of content that is legal to access in the associated country.
Instead of tackling the full breadth of censorship problems,
we focus on the more insidious problem of soft censorship.
The OpenNet Initiative reports that 37 of 74 measured
countries perform technical censorship [36]. Furthermore
in countries with soft censorship, there is clearly a demand
for robust circumvention networks. Reports in China show
anywhere from “at most 3% of the population” [42] to
“25% of netizens” [27] to “58% of bloggers” [43] have used
tools to access blocked content at some point. This refined
scope also allows us to tailor our system towards the needs
of the majority of censored netizens, trading improved per-
formance, availability, and accessibility for full anonymity.

This paper presents Unblock, a system resistant to soft
censorship. It provides access to websites in the face
of current censorship techniques including IP address
blacklisting, DNS poisoning, and keyword filtering.
Unblock is designed to help the majority of users who
want to access censored content. We assume that users of
Unblock access legal content and face little risk if they are
detected beyond Internet disruption. For example in China,
when a user accesses content with forbidden keywords
such as “Tiananmen Square”, they may experience service
disruptions for unrelated content afterwards [37]. While
there may be some uncertainty regarding the legality of
specific content in each country, we believe Unblock is
valuable as a tool to stem the ability of controlling entities
to covertly censor Internet content.

Previous research on censorship-resistant networks has
focused on routing-level network designs [21, 28, 56] and
overlay systems [14, 53], but neither of these have proven
to be well suited for soft censorship. Routing-level designs
require widespread physical deployments to be effective,
which has a high startup cost. Prior censorship-resistant
overlay systems use relays that are easy to identify and
block. This forces users to constantly add and configure
new relays, an effort that is financially and logistically
exhausting [4]. As we show in Section 2, attempts to hide
relay locations are largely ineffective.

Unblock is based on a third class of censorship-
resistance which rests on trusted social connections. By
asking users to explicitly connect with friends who they
trust to conceal their identity, Unblock forms a global
social network. Traffic is routed over these links to par-
ticipants willing to relay traffic out of the overlay (which
we call “exit nodes”) in a region where the content is not
censored. Multi-hop routing, coupled with mechanisms
to prevent overlay disruption, hide participants.

1

0

20

40

60

0 3 6 9 12 15

N
um

be
r

of
 c

ou
nt

rie
s

Number of censorship episodes

Figure 1: Number of observed censorship episodes against Tor
(i.e. blocking Tor when it was previously not blocked).

Unfortunately, node degrees in social networks exhibit
a power law distribution where many users only have a
small number of friends, reducing availability. Unblock
improves performance and availability by introducing
randomized shortcut links, untrusted connections that
risk exposing a small set of users to an adversary in order
to dramatically increase availability. The system also
employs a custom set of transport mechanisms optimized
for such a multi-hop network.

In order to demonstrate the feasibility of Unblock,
we implement the protocol on top of OneSwarm, an
existing social overlay-based bulk file sharing system. Our
implementation shows the ability of censorship resistance
to piggy-back upon existing systems, and demonstrates
the incentives and protocol-masking techniques such a
system can employ. We evaluated the performance in
controlled testbed settings and measured the ability to
perform web requests under various configurations. We
evaluated our mechanism for social network augmentation
using a simulator to measure the implications of our design
decisions at scale. Our measurements show that Unblock
provides high availability and improved performance with
minimal risk of exposure of participants.

2 Background and Challenges
Existing overlays are unsuitable for providing blocking
resistant services. Public open-access overlays like Tor
are easily blocked by governmental censors while social
network-based overlays have poor path availability and
connectivity. Moreover, multi-hop traffic forwarding over
overlays is slow, resulting in a frustrating web browsing
experience for users. In this section, we quantify these
limitations to motivate the design of Unblock.

2.1 Open Access Overlays are Easily Blocked

Public open-access overlays have two characteristic
attributes: (a) any client can use any relay to construct
a circuit for routing traffic, (b) they rely on a centralized
directory system to publish information regarding relays.
These include anonymizing overlays such as Tor, Ultrasurf,
and Freegate, as well as open proxies that are used to
evade censorship [17].

 0

 50

 100

 150

 200

 250

100 200 300 400 500

Nu
mb

er
 of

 br
idg

e n
od

es

Vantage points

Figure 2: Number of discovered Tor bridge nodes vs number
of PlanetLab vantage points.

Open access overlays are vulnerable to blocking
because of their use of a centralized directory service and
because they freely distribute relay addresses to users. For
example, Tor provides a few well-known directory servers
that return certified lists of relays. As the censor can look
up or crawl all relays, these systems are as blockable as
the very websites they want to provide access to.

To quantify the resilience of open access overlay, we
analyzed availability provided by the Tor network. Using
data the Tor project has maintained from usage of its
network in 243 countries from August 2007 to December
2012 [48], we aggregated the number of clients that
connected to each of the Tor directory servers into two
week periods by country. We compared these totals with
the preceding period. Finally, these ratios were normalized
to the total number of Tor users around the world for the
two corresponding periods. The two week period acts
as a low pass filter, minimizing variations in usage. By
normalizing against the global user count, the analysis
also accounts for overall trends in Tor usage.

We analyze this data by defining a censorship episode
as an event where the Tor usage in a country where Tor
is normally unblocked drops more than four standard
deviations below expectation. Figure 1 illustrates the
results from this analysis. Out of 243 countries, Tor
experienced at least one censorship episode in 53, with
repeated disruptions in many of those countries.

In response to an increasingly hostile network envi-
ronment, Tor has added semi-secret relays called bridge
nodes and protocol obfuscation called obfsproxy. While
obfsproxy is orthogonal to IP blocking, and employs
techniques which work in tandem with Unblock, bridge
nodes do not solve the problem of providing safe entry
points to the overlay. The same mechanisms which help
users find bridges can be abused to identify and block those
same machines. Although Tor limits the number of bridges
exposed to any given IP, this restriction is ineffective
against a resourceful censor in possession of a diverse
set of IP addresses.1 For Figure 2, we crawled the Tor

1Tor also uses other mechanisms for distributing bridge nodes, such
as automatic email responses to email queries for bridge nodes from
Gmail accounts. These mechanisms are equally susceptible to crawling

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

CD
F

Fraction of Node Uptime

Foursquare
Flickr

Youtube

Figure 3: Fraction of nodes with paths to exit nodes on different
social network datasets for varying node uptimes and with 10%
of the nodes being exit nodes.

bridge discovery mechanism from multiple vantage points
on PlanetLab. We found that by requesting bridge nodes
from multiple locations, we were able to discover the IP
addresses of nearly 240 bridge nodes in Tor. In fact, this
included almost all of the Tor bridge nodes that were dis-
tributed through HTTP during the measurement period [3].
One could easily imagine a censor using similar crawling
techniques to find and block bridge nodes. Reports
confirm that China already blocks bridge nodes [50].

2.2 Social Network Based Overlays Have Poor
Connectivity

Social network overlays have been explored in the past
to improve trust and security. Examples include the Os-
tra [33] email service and the OneSwarm [20] system for
anonymous P2P file-sharing. Social overlays route user
traffic to “exit nodes”, nodes located in non-censored do-
mains willing to make connections on behalf of other users,
in order to provide access to blocked websites. Social over-
lays are an attractive option for resilient service because the
network can be formed in a completely decentralized fash-
ion. As each user joins the overlay by connecting to his ex-
plicitly trusted peers, no single user (including the censor)
can discover the identities of more than a few participants.

Unfortunately, availability in social overlays tends
to suffer from sparse connectedness. We measured the
graph properties of Youtube, Flickr and Foursquare using
datasets collected by [32, 44]. We hypothesize these
networks will be at least as dense as a network targeting
censorship resistance, where users may be hesitant to
advertise their participation. Nevertheless, most nodes
in the measured networks have at most a handful of links
to other peers and a large number of users have only one
social link. This is particularly problematic in a P2P
setting where users, essential for connectivity, may not
be available all of the time.

We simulated the availability of paths through these
social networks under varying churn (percent of time users
spend online) when 10% of participants serve as exit nodes.

attacks, especially since researchers have demonstrated that one can
acquire Gmail accounts for about $0.30 per account [35].

Site Direct (ms) Tor (ms) Slowdown
Google 222 8,940 40.8

Facebook 1,821 16,711 9.2
Amazon 1,289 13,914 10.8

Twitter 684 9,229 13.5
Yahoo 1,810 15,850 8.8

Table 1: Slowdown introduced by Tor for loading popular
domains in January 2013.

Figure 3 shows the results of this experiment. We find that
the availability of working paths is highly susceptible to
churn. Due to the stringy nature of these social networks,
churn disconnects some nodes entirely from any exit
node, lowering the total connectivity to exit nodes from
100% to around 50% for typical node uptimes seen in P2P
systems [18, 26, 41, 47]. Even when more nodes served
as exit nodes, we experienced similar disconnection
properties. Our simulations show that the number of
overlay hops is also affected by the social network
structure. Many nodes have to traverse long overlay paths
– much more than the three hop paths used by systems such
as Tor – and the overlay path lengths are further inflated
when only a fraction of the nodes are online.

2.3 Overlays Have Poor Transport Performance

By targeting soft censorship, we address a very different
target audience than activists who demand strict anonymity
but tolerate poor performance. It is important to offer good
network performance (i.e., low latency) for convenient
access to the wide-range of interactive web services. Also,
by optimizing Unblock for common web browsing, we can
incentivize longer uptimes of average users and improve
overall capacity and connectivity of the network.

Current overlays are typically not designed to take full
advantage of available bandwidth, and are faulted for
offering degraded performance to users. To some extent
this is unavoidable, since data is transferred multiple times
across the overlay, resulting in higher latency and a greater
possibility of traversing congested links. However, a well
designed protocol can mitigate these factors.

To characterize the latency of overlay communications,
we measured page load times using Tor compared
with “normal” direct connections from a set of 112
geographically diverse PlanetLab nodes. As can be seen in
Table 1, the page load time for popular sites increases by
a factor of 10 when web pages are loaded over Tor. This
is consistent with the issues outlined in [15, 48]. For the
same experiment on the Alexa top 100 sites, the median
page load time increased from 2.1s to 15.7s. Overlay
transport performance is particularly important in the
context of social overlays, where paths to an exit node
could be longer than the three hops that is required by Tor.

The performance inefficiencies of overlay networks
are generally attributed to two factors. First, forwarding
traffic over multiple end-hosts limits the throughput to the

3

slowest link. For example, in Oneswarm, multi-hop over-
lay paths have an average throughput of only 29 KBytes/s,
leading to poor performance unless multiple paths are
used [20]. Second, in Tor, all traffic between any pair of
overlay nodes, even if they represent circuits for different
clients, are multiplexed over a single TCP connection.
This mixing results in interference across circuits during
congestion control and large queueing delays [39].

3 System Design
In this section, we describe the design of Unblock that aims
to combine the privacy, security, and locality properties
of social overlays with the flexible and robust connectivity
of open access overlays.

3.1 Adversaries and Threat Model

We model our censor based on existing soft censorship
practices seen in many parts of the world. Content censor-
ship is performed using technical means – i.e., the censor
silently blocks or alters access to certain sites but does not
impose real-world punishments on users for using anti-
blocking software. We assume that the censor has direct
control over routers in their domain and is able to disrupt
communications through matching patterns in the packet
header or content. Studies have confirmed that censors ex-
ploit this control to block content by polluting DNS entries,
blocking IP addresses, or blacklisting keyword terms [37].

We expect a censor will also be able to infiltrate a
limited number of social links, giving it access to the
overlay. It is able to generate, modify, and delete protocol
messages flowing through nodes it controls, create sybils,
record timing and other information, and correlate traffic
from multiple nodes. We call adversary controlled nodes
moles, since they infiltrate the social network to spy on
and disrupt the network.

Importantly, our adversary does not employ a whitelist
(blocking all traffic except allowed sites), seize client
machines, or otherwise coerce users into revealing
which friends are running Unblock software. While
censors have routinely targeted and blocked popular
anti-censorship systems, there have been no reports in
China (or many other countries) of users being punished
for using anti-blocking software [36]. Such measures carry
significant political, social, and economic costs 2. If the
adversary were to prohibit all encrypted communications,
our approach would not be effective.

Unblock is resilient against an adversary who disrupts
flows based upon host, protocol, or keyword analysis. Un-
der active surveillance within the overlay, an adversary will
be unable to determine the traffic of other users. We are as
robust to protocol analysis as other overlays. The Unblock
overlay can be used in parallel with protocol obfuscation

2The Egyptian government’s Internet shutdown in 2011 was seen
to popularize rather than suppress anti-government sentiments [19].

like Obfsproxy to deter protocol fingerprinting.

3.2 System Overview

We proceed in three steps to build a blocking-resistant
overlay targeting interactive web browsing. Our Unblock
implementation is built on top of an existing social-network
based overlay aimed at peer-to-peer file sharing, which
allows us to test our system on an existing deployment,
and hide our traffic within an existing protocol.

Social-network based overlay: Users in Unblock have
real-world trust relationships. They establish a communi-
cation link between their corresponding nodes and use it
to convey overlay traffic. We use a social overlay because
it is easier to keep participation largely secret – individual
members might be compromised by social engineering at-
tacks, but it is harder to systematically expose and block a
significant fraction of overlay communications. Technical
mechanisms are needed for rendezvous and routing – that
is, how to discover the IP addresses of friends, and the paths
to exit nodes. A key challenge is that these mechanisms
need to be resistant to blocking. (See Sections 3.4 and 3.5.)

Overlay augmentation: To improve availability and
performance of multi-hop communication, Unblock
augments the social overlay with additional random links
that provide shortcuts and a greater diversity of paths. Cru-
cially, this mechanism reveals only a bounded amount of
membership information to an attacker. (See Section 3.3.)

Optimized transport: The augmented overlay path is
subject to transport inefficiencies that afflict overlay mix
networks. To mitigate the performance impact, Unblock
specifies transport layer mechanisms for achieving
reasonable latency and throughput. We understand
that the protocol will need to evolve as censors develop
more sophisticated protocol fingerprinting techniques,
but anticipate mitigating such attacks through the same
protocol obfuscation techniques employed in other
anti-censorship systems. (See Section 3.7.)

3.3 Hybrid Overlay Network

As discussed earlier, relying on social network links is
insufficient. To supplement connectivity, we use a hybrid
overlay: we add links to approximate a random overlay
network. The augmented network provides users with
additional peers that are likely located at random points
in the social network. In addition to providing users with
redundant connectivity, these additional untrusted links
counteract the stringiness of the social network, greatly
reducing the graph diameter.

Before describing the augmentation used in our system,
we examine the desired properties of such a mechanism.

• Any augmentation mechanism that exposes relay
identities can be abused by an adversary. We need to

4

I H

F E

C
B

G

A

D X

Figure 4: Example of the addition of untrusted links. In this
example, an RNL is propagated through the path F-I-H-G-D-E-
A-X. Nodes F, I, G, and A add themselves to the propagated RNL.
Node X can then establish direct untrusted links with nodes F,
I, G, and A when it receives the RNL. Both trusted and untrusted
links can be used for data transfers.

minimize the extent to which an infiltrating adversary
can exploit this mechanism.

• At least some of the additional links should be to relays
that are not in a node’s immediate neighborhood; this
reduces path length to far away exit nodes.

• We require the set of untrusted links to be stable over
time in order to reduce the leakage of node identities.

Our approach is to provide each overlay node with a
set of untrusted links based on its position in the social
overlay. We view a node’s social network connectivity as
a unique capability and develop a distributed mechanism
for providing each node with additional links based on its
location. We consider the Sybil attack model introduced
by systems such as SybilGuard [60]. When adversaries
infiltrate the social overlay, we bound the number of
nodes exposed to the adversary to be proportional to the
number of attack edges - defined as a social link between
an adversary controlled machine and a legitimate user.
Importantly, our mechanism ensures that adversaries
are not be able to uncover an arbitrary number of node
identities by mounting a Sybil attack wherein they assume
multiple identities behind a single attack edge.

3.3.1 Mechanisms for Disseminating Relays and
Computing Network Parameters

Preliminaries: We form untrusted links by circulating
collections of randomly sampled overlay nodes, referred
to as random node lists (or RNLs). Each overlay node
is identified by its public key and the IP address and port
at which it can be contacted. The RNL is an ordered list
of these identifiers, with the last element being the node
that has been most recently added to the list. RNLs are
propagated through the edges of the social overlay (also
referred to as trusted links). Nodes probabilistically add
themselves to RNLs before propagating them further. A
node receiving an RNL can then establish untrusted links
to nodes identified by the RNL. New shortcut connections

1. When node x establishes a trusted link li, it computes
D(x,li), which is a boolean value that determines whether
or not x will add itself to RNLs received through li. D(x,li)
is probabilistic with the random choice seeded using node
ID x and link ID li, and x retains this computed value for
subsequent operations.

2. Upon receiving an RNL through a trusted link li, node x
does the following:

(a) x adds itself to the incoming RNL based on D(x,li).
Since this decision takes into account li, a node might
add itself to an RNL received through some of its trusted
links, but not others. This choice will be stable both
within and across epochs.

(b) Upon adding itself to the end of the incoming RNL,
x ensures that the size of the RNL is bounded by the
parameter k. If it exceeds k, x removes the very first
element, or the farthest node, from the RNL.

(c) x then propagates the RNL through one of its trusted
links, choosing the one, lo, that precedes li in
the consistent hashing keyspace. x also saves the
propagated RNL locally.

Figure 5: RNL Computation.

to these nodes are labeled as untrusted and are not used
for propagating RNLs; these shortcuts are used exclusively
for routing overlay traffic.
RNL Propagation: RNLs are not flooded but rather prop-
agated through specific paths within the trusted social net-
work. These paths are are recomputed at each epoch, de-
fined to be “a long time” – a period of time where the major-
ity of users in the system have changed their IP addresses
and therefore the identity of nodes discovered in previous
epochs is of little value to an adversary. This period can be
on the order of a few days to weeks, depending on the un-
derlying network [57]. At the start of the epoch, each node
will take a snapshot of its current trusted links, hash the
identity of each neighbor with a local secret, and use these
as the set of IDs in a consistent hashing keyspace. The
resulting keyspace is used to determine where to forward
incoming RNLs. The outgoing link is chosen as the link
preceding the incoming link in the keyspace. The keyspace
is fixed for the duration of an epoch. The use of consis-
tent hashing implies that RNLs are propagated through the
same deterministic set of trusted links during an epoch.
Further, it also minimizes changes between epochs when
new trusted links are added to the social overlay.

Figure 4 provides an example of how RNLs are
constructed and Figure 5 provides the pseudocode. When
a node is connected to the rest of the network by a single
trusted link, it will forward any incoming RNL back across
the same link, possibly adding itself as shown in Figure 6.

In addition to RNL propagation, nodes also periodically
perform random walks to obtain unbiased samples of net-
work characteristics such as average uptime, average node
degree, and network size. We borrow techniques from
prior work [5, 24, 30], which show that a node can perform

5

I
H

F E

C B

G

A

D

V

X

U

Z

Y

Figure 6: Example of RNL propagation. Node F has hashed
its neighbors as I→C→H . Advertisements from I are passed
on to C. Since C has no other friends, it will send the same list
(possibly adding itself) back to F .

a random walk of length r, where r is a crude overestimate
of the network diameter (say 30) in order to arrive at a
random node in the network. Repeated random walks
yield samples from different nodes and an average of the
reported values is used as local estimates of expected node
uptime and node degree. We also use the random increas-
ing walk technique proposed in [5] to obtain an estimate of
the network size. This technique constrains random walks
to progress only from lower node ids to higher node ids,
with the number of hops taken by the walk providing an
estimate of the network size. Again, repeated invocations
of the random walk is used to obtain an accurate estimate.

3.3.2 Policies

The RNL propagation mechanism outlined above allows
us to propagate node identities through random paths in
the social network. We now outline how we can configure
the mechanism to achieve a few desired properties. Our
default policy is as follows: We configure the number of
relays propagated through each RNL, k, based on the esti-
mated size of the network (n) and the expected probability
that a typical node is online in the system (f). Our desired
outcome is to have each node be connected to at least c on-
line nodes in the system. Studies have shown that as long as
c≥3, the random overlay formed by untrusted links forms
a well-connected network with low diameter [6]. Each
node connects to the c/f furtherest nodes in the propagat-
ing RNL in order to account for node uptimes. Thus, we set
the number of relays stored in the propagating RNL,k, to be
set to log(n)+c/f , such that the furthest c/f nodes are ran-
dom nodes within the network [7,16,60]. Further, consider
the following connection policy for establishing untrusted
links. Upon receiving an RNL, let a node x with lx trusted
links connect to the c/(f ∗ lx) farthest relays propagated
by a RNL and establish untrusted links with each of these
relays. This policy leads to improvements in availability
and performance, and also mitigates bottlenecks.

Enhanced availability: Since a node x would receive
lx such messages through each of its links, it will obtain
c/f untrusted links overall, each to nodes which are about

log(n) hops away. In expectation, c of these c/f untrusted
links are likely to be active at any instant in time, thus
providing greater path diversity to the node.

Reduced path lengths: The scheme outlined above also
reduces path lengths. It has been shown that many social
networks have the small-world topology property in that
a sequence of log(n) random hops through the network
often leads to a random node within the network [7,16,60].
This implies that the additional links can be modeled as
random links, with the associated benefit of bounding the
diameter of the augmented overlay [6]3.

Mitigating bottlenecks: The scheme described above
also improves the number of links that cross any cut of the
network graph. RNL messages propagate k= log(n)+c/f
relays across each trusted link that separates a censored do-
main from other uncensored domains. Thus, the augmenta-
tion mechanism will likely increase the number of overlay
connections across ISP or state boundaries by a factor of k.

Balanced load: We configure the decision process
D(x,li) to avoid creating untrusted links to high degree
nodes. These nodes, with degree over c/f , forward RNLs
but never add themselves. This avoids hotspots, prevents
discovery and blocking of high-degree nodes, and allows
for the propagation of nodes with lower degrees.

Configurable security: Any node can choose a security
policy of never adding its identity to RNLs or connecting
to nodes propagated by RNLs. This security setting allows
users in regions that practice strong censorship to prioritize
their anonymity over availability and performance.

3.3.3 Analysis

The RNL propagation mechanism limits an adversary’s
ability to discover relay addresses:

Limited size of RNLs: With our default policy outlined
above, a mole with a single attack edge will discover the
identity of log(n)+c/f relays by examining its incoming
RNL. Further, it can generate an RNL of its own, containing
just Sybils, and propagate this across the attack edge.
Unsuspecting low-degree nodes would then connect to the
attacker and its Sybils. The number of such victims is also
log(n) + c/f since these low-degree nodes would then
replace the attacker nodes in the RNL after processing it.
Overall, each attack edge yields a total of 2∗(log(n)+c/f)
relays to the attacker. As an example, consider the sce-
nario in Figure 6. The mole X would only receive the
log(n)+c/f items forwarded by A, and could receive up
to log(n)+c/f additional connections upon forwarding
a malicious list of items back to A. The attacker would

3It has been observed that the fast mixing property might not hold for
some fraction of the nodes in social networks [34]. These nodes would
see smaller reductions in path lengths, but they will still benefit from
improvements in availability as long as the uptimes of its untrusted links
are not correlated.

6

receive no additional information from the presence of
SybilsU , V , Y , andZ, as they don’t have additional attack
edges. In other words, a censor’s ability to find participants
will be limited by the number of attack edges it controls.

Stability in RNL propagation paths: Propagation
paths are computed using local decisions that are remain
stable over time. Thus repeated invocations of the RNL
propagation mechanism does not reveal any additional
relays than earlier RNL messages from the same epoch.

In summary, the described mechanism results in a
hybrid overlay that augments the underlying social
network with additional links that approximate a random
overlay network. Crucially, the mechanism maps the
location of a node in the social network to a set of random
nodes in a consistent and crawl-resistant manner, thus
limiting the leakage of relay identities and safeguarding
against Sybil attacks.

3.4 Accessing the Internet through exit nodes

Unblock uses exit nodes to create a bridge between the
overlay network and the public Internet. Exit nodes can ei-
ther provide global Internet connectivity or restrict access
to a small set of services. The user running the exit node
is free to specify the exit policy of their node. Running an
exit-node with global connectivity has been problematic
for other networks4, motivating the more expressive policy.
In Unblock, a user can opt to only provide access to certain
domains (e.g., only access to wikipedia.org, twitter.com,
google.com, and nothing else), to reduce the risk of abuse.
Service providers that wish to improve access to their
own site can run their own nodes providing access to only
their service. In this latter case, the provider may keep
information about the exit node (such as its IP address)
private, creating an effect similar to Tor hidden services.

In order to contact an exit node, a peer must first know
of its existence. In Unblock, each exit node is identified by
a public key, along with a recent announcement potentially
signed by the Unblock directory service5. The announce-
ment asserts which services are accessible from the node,
and where the node is located (e.g., country or ISP domain).

Exit nodes announce their presence periodically
through announcement messages. When nodes receive
an announcement, they immediately forward the an-
nouncement to their neighbors. The return paths of these
announcements determine a minimum latency routing
tree that is used when communicating to the exit node.
Announcements contain a timestamp, nonce, the hash
of the public key of the exit node, an optional set of exit

4For example, law enforcement sometimes misattributes traffic from
a Tor exit node to the owner of the node.

5The purpose of the directory system is described in 3.6. The
directory service is replicated, e.g., on PlanetLab nodes in our current
deployment, to ensure higher availability and reachability, and can be
accessed either directly or through the Unblock overlay.

node properties (such as the region where the node is
located and domains reachable through the node), and an
optional signed attestation from the directory service that
the announcement is indeed from the exit node.

Given the augmented overlay structure of Unblock,
there are often a large number of possible paths to choose
from when routing to an exit node. The goal of the
routing protocol is to provide: (a) minimized end-to-end
latency, (b) multiple parallel paths when available, and
(c) resilience to node failure/churn.

Our approach uses announcement paths to connect to
exit nodes. Announcements create a minimum spanning
tree, but the tree will often be invalid due to churn. To keep
the tree current, nodes update their neighbors with their
new latency when their minimum latency link disconnects
or reconnects. To find multiple paths to an exit, clients
route through multiple links for the first hop and then
traverse the spanning tree from then on.

The traffic cost of exit node announcements is minimal
until the network becomes large. With 10,000 exit nodes
updating at 10 minute intervals, the per-friend traffic cost
of maintaining routes to exit nodes would be around 3kbps.
Once the overlay grows large enough for this traffic to be
noticeable, the internal DHT can be used to manage traffic
by coordinating aggregation and regional preferences for
announcements.

Signed announcements imply that the signer has verified
the claims in the announcement, helping to validate client
trust. Exit nodes which cannot obtain a signature from
the directory server may participate in the system either
by offering a local service, which clients must explicitly
connect to, or by offering their own directory server, and
encouraging clients to trust that authority.

3.5 Internal Overlay DHT

Unblock includes a DHT as a rendezvous service for
locating the current IP address of peers when a node
rejoins the overlay [20]. We cannot rely on an external
DHT, such as OpenDHT or Vuze’s DHT, as access to these
can be blocked. The system therefore has to provide a
DHT-like functionality using just the nodes participating
in the overlay. An additional restriction is that the DHT
implementation should not expose the identities of nodes
participating in the system; that is, DHT operations should
be performed using just local information comprising of
the trusted or untrusted links known to the participants.
Another requirement is that the DHT needs to be robust
to byzantine moles operating as DHT service nodes. Other
security-focused DHT designs, such as Whanau [25] and
membership-concealing overlay networks [52], address
these requirements using a Byzantine-resistant algorithm
across all members of a social network. We use a much
simpler design, leveraging the exit node routes that already
exist in the system design.

7

The DHT is created by partitioning keyspace across the
exit nodes that participate in the system. Both objects and
exit node identifiers are hashed onto a circular keyspace,
and objects are assigned to the exit node that is closest
to it in the keyspace. To perform lookups and updates,
we leverage the fact that the exit node announcements
create a routing table at each node in the system. This
table contains the next hop to route to each exit node.
When a node wishes to query the DHT it can first look at
its local routing table to find the exit node most adjacent
in key-space to the desired key. The node then routes the
query to the exit node through the appropriate neighbor,
and nodes along the way maintain state in order to route the
reply. There is no guarantee that the querying node knows
about all exit nodes6, so each hop along the path computes
the closest known exit node to the target key and routes
the query towards it. DHT lookups can be routed through
both trusted and untrusted links, increasing resilience.

This scheme is essentially a variant of Virtual Ring
Routing [8], where nodes are able to provide a DHT-like
abstraction by routing messages through their neighbors
in a physical network. Our approach adds an additional
restriction in that the DHT storage is hosted on just the
signed exit nodes (as opposed to all overlay nodes) in
order to improve both security and performance. First,
if all nodes are allowed to serve as DHT storage nodes,
then an adversary can mount Sybil attacks and lower
DHT availability [51]. Second, since most nodes would
have received validated exit node announcements, they
can directly route towards the appropriate storage node
without requiring recursive lookups as in [8]. While our
design incurs higher overhead and larger routing tables
than membership-concealing overlays [52], this overhead
was already necessary for relaying user traffic to exit
nodes. By leveraging this primitive, we can ultimately use
a simpler design with similar security properties.

The DHT is used to perform rendezvous for nodes rejoin-
ing the system. In order to reconnect, nodes use the system-
internal DHT to update their current address to friends. All
that is required for reconnection is that at least one previous
connection remains at the address it was last seen.

3.6 Overlay Security: Attacks and Defenses

There are two key considerations in the design of the over-
lay routing and transport protocol used in Unblock. The
most important is defense, which prompts the use of secure
DHT access, per-hop and end-to-end encryption, and of
mixing messages from different connections into packets
to protect users from an adversarial network. The second
goal for the protocol is performance, which motivates the
use of a custom application-level wire format, multi-path
support, and UDP datagrams rather than TCP connections.
We discuss these two separately, first laying out the security

6This can happen immediately after startup for example.

properties of Unblock communications, and then sketching
how we gain performance within those constraints in 3.7.

The Unblock protocol encompasses several stages: ren-
dezvous, connection establishment, choice of exit node,
and data transfer. Below, we discuss how Unblock prevents
the exposure of node identities to an adversary and limits
his ability to disrupt overlay communication for each stage.
Rendezvous: Unblock uses the DHT to store IP address
information needed for rendezvous. The stored informa-
tion is encrypted to ensure that the DHT cannot be crawled
to determine the IP addresses of the nodes participating
in the overlay. Specifically, each node is identified by a
1024 bit RSA key pair. This key is persistent, even if the IP
address of the peer changes. At startup, a node will insert
a copy of its current connection information (IP address,
port number) into the internal DHT for each of its direct
links. These copies will be encrypted with the neighbors
public key, and indexed into the DHT using a 20 byte,
randomly generated shared secret, agreed upon during the
first successful connection. This ensures the secrecy of
both the key and contents.
Connection Establishment: Unblock connections
between neighbors use SSL based on the nodes’ RSA
key pairs. This prevents an adversary from knowing what
service is offered, probing the hosts to identify whether
a given node is running Unblock7, or distinguish the
protocol from other SSL connections. Control messages,
such as DHT searches and exit node announcements occur
directly within this connection. As part of connection
establishment, nodes also detect if they can transmit UDP
packets to each other, and data transfer will occur through
encrypted UDP packets when possible. While our existing
transport uses SSL and DTLS, we can also tunnel within
existing obfuscation systems to disguise our traffic as
other protocols, like Skype or HTTPS [49, 54].
Exit Node: An important property of the Unblock
protocol is resilience to adversaries claiming to offer exit
capabilities. The two mechanisms a malicious exit node
can leverage to directly attack the system are: (1) flooding
announcements to overwhelm the system, and (2) black-
holing received traffic. We mitigate these attacks through
certification. Nodes in the system will forward exit node
announcements if they are signed by a trusted directory
service. This property allows the trusted service to throttle
the total rate of exit node announcements on the network
and to verify the functionality of exit nodes before signing
proposed announcements. Exit nodes will periodically
request certification from the directory service through the
Unblock overlay. Unsigned exit node announcements are
subjected to strict rate limiting by each node. In order to
limit sybil attacks on the directory server, we require com-
putational puzzles to be solved as part of the certification

7This probing technique is used by China to identify hidden Tor
bridge nodes.

8

request. Because sybil exit nodes can perform a variety
of availability attacks (i.e. selectively blackhole traffic),
the directory server periodically checks for bad behavior
from exit nodes. In the future, we could also introduce a
reputation system that allows users to keep track of poorly-
performing exit nodes. Individual nodes can also request
additional random exit nodes from the directory service
in order to detect whether it is being actively attacked.

The use of a directory server does open additional
channels of attack that we must now address. First, if an
adversary controls a node on an announcement path, it
can selectively forward only the announcements for exit
nodes it is colluding with. This attack is mitigated by the
presence of shortcut links, which allow nodes exposure
to additional announcement paths via random nodes in
the overlay and forces an adversary to fully partition the
network for an effective attack. Secondly, an adversary
may attempt to directly attack the directory server, through
a denial of service attack. The service can be built to
withstand such attacks, since it can run across multiple
machines and addresses to increase availability. If the
service is successfully taken offline, the only negative
effect is that advertisement trees may become stale.

3.7 Overlay Performance

A usable system needs to provide an acceptable level of per-
formance for typical interactive browsing. We believe the
choice of protocol mechanism dramatically influence the
viability of overlay transport. We examine several mech-
anisms, including: the use of UDP datagrams with custom
flow control, the ability to take advantages of multiple
paths through the overlay, and a custom application-level
protocol for web requests, and show these mechanisms
make the Unblock protocol efficient for web browsing.

Datagram Flow Control: Path conditions can change
due to churn or temporary bursts of traffic. Tor multiplexes
traffic between nodes, with multiple independent flows
multiplexed onto a single reliable TCP connection
between adjacent relays. When these flows have different
characteristics, the multiplexing can result in suboptimal
performance for all flows traversing the link8. The most
immediate issue is that small, latency sensitive flows can
get “stuck” behind larger bulk data transfers. To address
this issue we use a datagram based transport at each
overlay hop and end-to-end congestion control across the
entire overlay path. This minimizes interference between
flows that share the same overlay hop.

Nodes in the system can have very different upload ca-
pabilities, which will result in queuing. Flows originating
at a high bandwidth node will quickly fill the buffers of
subsequent low bandwidth relays. Aggravating this issue,

8Prior studies have diagnosed these issues in the context of Tor and
proposed backwards-compatible fixes to Tor, while retaining the basic
per-hop TCP transport and single path transfers [2, 15, 39].

overlay paths span multiple hops, often spanning several
continents. End-to-end congestion control responds to
congestion over timescales of RTT, leading to slow ramp
up and slow recovery from loss. We address these issues
by adding explicit per-hop flow control, where nodes
communicate how much they are willing to buffer for each
active connection.

This mechanism minimizes queueing and eliminates
packet loss on overlay nodes by regulating the flow of
data from upstream nodes using credits. Credit to send
data to a downstream node is replenished through control
messages. When a node detects that a queue is building
up, it stops issuing credits to upstream nodes, temporarily
slowing or stopping incoming flow. This design is similar
to mechanisms used in ATM networks [23], which suggest
that some queue must be allowed to form to fully utilize
the bottleneck node [46].

Nodes in Unblock therefore detect if they are a
bottleneck, and manage their credits accordingly. Nodes
can detect that they are non-bottleneck nodes when they
are limited by credits rather than their own bandwidth.
This allows us to fully use available throughput while
minimizing latency at intermediate hops.

End-to-end Congestion Control over Multiple Paths:
The routing algorithm ideally yields multiple paths to a
specific exit node. Data from the incoming stream is split
into chunks, which are then transmitted across all available
paths using UDP datagrams. The receiving endpoint
assembles the packets and delivers it to the application
in the correct order. Unblock handles congestion over
end-to-end paths using a TCP style transfer window for
each overlay path that is updated using the traditional
additive increase multiplicative decrease mechanism upon
packet losses over that path (as in MPTCP [55]).

We also use a redundancy mechanism to balance the
goals of latency and throughput. Based on how much
data has been transmitted, the sender will determine if
the stream is a data-intensive, throughput-bound stream,
or a bursty, latency bound stream. Initially, all transfers
are assumed to be latency sensitive and messages will be
duplicated and sent along multiple overlay paths. The
amount of duplication is steadily reduced as more bytes
are transferred over the end-to-end path. This balances
the goal of minimizing latency when transmitting small
pieces of content with the goal of using all of the available
throughput for larger transfers.

3.8 Deployment

Unblock leverages resources provided by the participants
in the system in order to provide a self-scaling network,
in contrast to other systems which pay to operate a number
of proxies [14, 56] or those systems where there is a
distinction between users of the system and relays that
constitute the transport infrastructure (e.g., Tor).

9

Our prototype Unblock implementation is built on top
of OneSwarm, an existing social-network based overlay
aimed at peer-to-peer file sharing [20]. Bundling Unblock
with another application addresses some of the challenges
associated with deployment and incentives. First, it allows
us to the develop and test our system under real-world
conditions, and across an existing deployment.

We do have to ensure that the incentives for Unblock are
aligned with users of the underlying system. For instance,
there should be benefits for existing users to serve as relays,
considering that Unblock users would not necessarily
participate in the underlying network. Interestingly, by
establishing trusted or untrusted links with Unblock users,
connectivity increases, which in turn translates to more
diversity of overlay paths between overlay users. In other
words, it suffices that Unblock users are passive transport
relays as opposed to active participants.

4 Evaluation
In this section, we present experiments that evaluate Un-
block. Currently, the Unblock extension has been enabled
by a small set of users on top of OneSwarm. We do not have
access to the topology of the user base, making it difficult
to quantify the performance and robustness of Unblock us-
ing that deployment. We therefore evaluate Unblock using
simulations and controlled wide-area testbed experiments.

We use a simulator to evaluate the security and
performance properties of Unblock at scale. We measure
the impact of using an augmented overlay. Shortcut links
are shown to maintain connectivity for more nodes for
typical uptimes seen in peer-to-peer systems. We then
explore the trade-off between better availability and risk
of disruption of service by a censor adversary.

Next we evaluate the performance of our transport
layer implementation using a multi-hop test framework
in PlanetLab. We examine the individual mechanisms
that comprise the transport layer used in Unblock and
also compare its performance against standard transport
mechanisms used in systems such as Tor.

4.1 Simulation Results

Using the simulator, we find that the shortcut discovery
protocol effectively improves the connectivity to any
particular exit node in the face of churn, while restricting
the number of honest users that are exposed to a censor’s
moles in an attack. Even with a strong model of an
adversary that can block all edges of the exposed nodes
in the network, shortcuts effectively improve connectivity.

We perform these measurements using simulated
networks based on the datasets collected by [32, 61]. For
some of these datasets, as in the Youtube social network,
we were able to obtain the geographical location of the
user. In such cases, we attribute a latency between users
using predictions from iPlane [29]. Exit nodes and moles

are chosen at random from available nodes in the graph.
We performed our evaluation for varying churn, wherein
the node uptimes and downtimes are modeled using
Poisson distributions. Lastly, shortcuts are only created
between nodes that have degree less than the desired
threshold of active connections. This restriction protects
high-degree nodes from being overloaded and restricts
disclosure of high-value nodes to censors.

Figure 7(a) shows the improvement in the availability
of paths to exit nodes as we augment the underlying social
network for the Youtube dataset with additional untrusted
links. In this experiment, we set 10% of the nodes to be
exit nodes. We perform our experiment for a range of node
uptime values. For each value of expected node uptime
fraction f , we set the number of untrusted links discovered
by the RNL mechanism to be 3/f . This parameter setting
implies that each active node, in expectation, will have
three untrusted links to other active nodes in the system.
The results show that the augmented social overlay
provides dramatically higher availability of paths to exit
nodes, especially when the node uptime fraction is low
(as is the case with most peer-to-peer systems [18, 41, 47]).

The Youtube social network comprises about a million
users. We performed the analysis described above on both
smaller and larger social networks (e.g., the Foursquare
network with about hundred thousand users and the Flickr
network with about two million users) and with varying
numbers of exit nodes. We obtained results that were
qualitatively similar. For example, adding untrusted links
improved availability from 39% to 97% for the Flickr
social network and from 59% to 99% for the Foursquare
social network under the assumption that the fraction of
node uptime is 0.2.

We also examined the improvement in latency of the
path to an exit node using the Youtube dataset. Figure 7(b)
shows the CDF of latencies to any available exit node
when nodes are online for 50% of the time. We examine
this with and without untrusted links, and observe that
the use of untrusted links also significantly lowers latency.
We also model a strong adversary that monitors exposed
shortcut nodes from 10000 moles in the network. The
censor also has the power to block all of a node’s links
if exposed to its moles9. As expected, we found a linear
relationship between the number of attack edges and
the number of honest nodes exposed to moles. More
importantly, Figure 7(b) shows that there is minimal
degradation in both connectivity and performance as a
consequence of having the strong adversary.

Finally, we examined the impact of various types of
disruption attacks by adversarial nodes. We modeled an
adversary who had compromised a fraction of the nodes in
the social overlay and has the ability to drop protocol mes-

9In practice, a censor would be able to block communications to the
relay only from those nodes within the censored domain.

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Fraction of Node Uptime

Augmented overlay
Social overlay

 0

 0.2

 0.4

 0.6

 0.8

 1

250 500 750 1000

C
D

F

Latency to Closest Exit Node (ms)

Augmented overlay
Augmented overlay & censor

Social overlay
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Fraction of Nodes Compromised

Foursquare
Flickr

Youtube

Figure 7: (a) Fraction of nodes with paths to exit nodes on the Youtube social network dataset for varying node uptimes and with
10% of the nodes being exit nodes. (b) Impact of untrusted links on latency to exit nodes when 50% of users are online. (c) Fraction
of nodes with paths to exit nodes under adversarial attacks on availability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
D

F

Overlay Throughput (kbps)

1 Ch TCP
1 Ch UDP
4 Ch TCP
4 Ch UDP

4 Ch Non Redundant UDP

Figure 8: Throughput performance of Unblock. UDP per-
formance improves with more paths until the endpoints are
bandwidth limited. Non Redundant represents throughput when
packets are only sent once, at the cost of latency.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

CD
F

Completion of 100KB transfer (ms)

Redundancy enabled
No Redundancy

Figure 9: Latency performance within the overlay. With
redundancy, latency suffers less from slow/flaky paths.

sages and disrupt transport channels by dropping packets.
In particular, we considered an adversary who dropped
RNL messages, forwarded exit node announcements, and
then dropped the data packets of an overlay flow. Note that
it is more effective for the adversary to forward exit node
announcements so as to position itself on more overlay
transport paths. Figure 7(c) shows the fraction of nodes
with working paths to exit nodes as we vary the fraction of
live nodes that are compromised. We find that connectivity
in the augmented overlay is adversely impacted only in
the case of a determined adversary who has compromised
more than 20% of the nodes.

4.2 Transport Performance

We next consider microbenchmarks that allow us to
examine the performance and latency enhancements made
possible by different versions of the transport layer. Perfor-

mance was evaluated using PlanetLab nodes located across
the US. In all trials, the topology consisted of four disjoint
paths from client to server, each with three hops. All nodes
were selected randomly from the available pool, with nodes
reselected between each trial. We conformed to the un-
derlying networks imposed bandwidth rate limit of 1Mbps
at each node. In Figure 8, we present observed throughput
achieved with the various transport improvements: Trans-
ferring data using an encrypted UDP transport, transferring
data concurrently over multiple paths, and dynamic use of
redundant packet transmissions. Throughput is measured
as the time required to transmit one megabyte of data. Us-
ing multiple paths with UDP improves throughput linearly
until three paths, where bandwidth of either the source or
destination node limited the ability to transmit or receive
more. We also examine the throughput of multi-path flows
that do not perform any redundant transmissions in order
to characterize the capacity lost due to redundancy; this
scheme provides only a marginal increase in throughput
indicating that the cost of redundant transmissions is low.

Figure 9 provides microbenchmark results that evaluate
the use of redundant transmissions. We measure the trans-
mission time for a 100 kilobyte flow across the same topol-
ogy as the other experiments, with and without the adaptive
use of redundant transmissions. While most links in our
testbed had robust performance characteristics, when slow
or flakey links were encountered, redundant transmissions
were able to maintain a low latency connection by mitigat-
ing retransmissions and in-order delivery delays.

We conclude with an evaluation of web page load perfor-
mance through the overlay. We evaluated the performance
of our transport by inserting the Unblock overlay as a
relay to a SOCKS proxy. The PhantomJS headless webkit
browser was used to measure page load times of Alexa top
100 popular websites. Much of the time spent rendering
a page comes from dependent resources, making network
latency more important than many systems admit.

This set of experiments demonstrates the huge impor-
tance of lowering latency in order to efficiently handle
the small, bursty traffic associated with web requests.
Figure 10 shows that Unblock has a fairly constant 2-5
second page load penalty compared with loading pages

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

C
D

F

Webpage Load Time (ms)

Direct
Unblock

Single path TCP

Figure 10: Web page load time across the Unblock overlay.
Unblock represents load times across a three hop overlay using
the optimized Unblock transport protocol. Single path TCP
shows baseline load times for the same topology using per-hop
TCP over a single overlay path.

directly. The use of UDP, the ability to take advantage
of multiple channels, and the credit-based flow control
already provides a significantly less variable and lower
latency service than the baseline transport that uses
per-hop TCP connections over a single overlay path.

Performance in privacy preserving overlays is an impor-
tant problem, and we note from these experiments that the
transport protocol is both critical for achieving network
performance, and dependent on the network overlay. An
end-user based blocking resistant overlay like Unblock
will gain optimal performance from a different set of proto-
col choices than a system built with dedicated open-access
relays, and in particular the use of multi-path and redundant
transfers are more important in the Unblock scenario.

5 Related Work
Providing privacy and anonymity for Internet users has
been a longstanding goal of the research community, and
Unblock draws on a large corpus of previous work.
Anonymous Communications: Crowds [40] provides
anonymity by having an intermediary either choose a
random successor or simply transmit to the destination.
Tor [14] leaves the choice of relays to the source.
Anonymizing networks such as Tor have been shown to
be slow for reasons beyond bandwidth constraints [2].
Systems have been proposed to improve performance of
these networks using congestion control [59] and network
maintenance [31]. Unblock takes advantage of lessons
learned from these systems, as well as years of multipath
networking research [38,55]. There has also been a variety
of work on anonymous self-contained darknets such as
Freenet [12]. By contrast, Unblock focuses on providing
unrestricted open Internet access.
Censorship resistance: Naturally, anonymizing
solutions have been adapted to achieve censorship resis-
tance [11]. A key stumbling block is that most proxy-based
anonymizing solutions aren’t membership concealing.
The Tor developers recognized this challenge [50] and use
semi-secret bridges, but they can be exposed with some

effort (as we show in Section 2). Tor developers also have
employed camouflage and steganography techniques, such
as obfsproxy [49] and StegoTorus [54], to prevent censors
from fingerprinting Tor network traffic. Membership-
concealing networks have also been studied as an isolated
problem [52] from censorship resistance. While these ob-
fuscation and membership-concealing systems alone can-
not provide censorship resistance, they provide useful tech-
niques that can be applied to Unblock. Censorspoofer [53]
conceals its proxies by leveraging asymmetric paths and
IP spoofing to send traffic to clients. However, the system
is limited by the proxy’s ability to spoof addresses from
within its Internet service provider, as well as limited
indirect paths to contact proxies. Recently, there has been a
proposal for rearchitecting the Internet to provide Tor like
functionality at the network level [28]. Also related to such
an approach is Telex [56], which utilizes steganography
over random bits within an HTTPS header to hide a tag
that a middlebox can later detect and use to reroute the
packet. Both approaches require pervasive changes at the
network level and face significant deployment challenges.
Sybil defenses: Sybil defenses include strong identities,
computational puzzles and bandwidth contributions to
make peers prove that they are not Sybils, and leveraging
social networks [25, 60]. Defenses based on social net-
works, such as SybilGuard [60], might seem appropriate
for our setting as they limit the creation of trust relations to
unknown identities based on the social network properties
of the requesting nodes. They are however insufficient for
the threat model we consider partly because they do not
provide any mechanisms for concealing the membership
of the social network and partly because they provide
weak bounds on the number of trust links created to Sybils
by the network as a whole.

6 Conclusion
The desire for uncensored Internet access has motivated
the development of systems for censorship circumvention.
However, most popular systems are easily blocked and
often offer poor performance. In this paper, we presented
the design and implementation of Unblock, a blocking-
resistant overlay network that can reroute Internet traffic
to avoid censorship. Unblock is designed to combine the
security, privacy, and locality properties of routing over so-
cial networks with the more robust connectivity properties
of open access overlays. It is designed to be resilient to var-
ious blocking and infiltration attacks and provides high per-
formance transport over multi-hop overlays. Through large
scale simulations of the system and measurements of a pro-
totype implementation deployed on PlanetLab, we show
that Unblock can provide high availability and improved
performance. We believe the ideas behind Unblock will al-
low it to improve upon both the privacy and performance of
existing proxy-based censorship circumvention systems.

12

References
[1] Google Transparency Report.

http://google.com/transparencyreport.

[2] ALSABAH, M., BAUER, K., GOLDBERG, I., GRUNWALD, D.,
MCCOY, D., SAVAGE, S., AND VOELKER, G. Defenestrator:
Throwing out windows in Tor. In PETS (2011).

[3] APPELBAUM, J. Tor bridge nodes, 2011. Private communication.

[4] BALL, J. Internet anti-censorship tools are being overwhelmed by
demand. The Washington Post, 2012-10-21, 2012.

[5] BAWA, M., GARCIA-MOLINA, H., GIONIS, A., AND MOTWANI,
R. Estimating aggregates on a peer-to-peer network.

[6] BOLLOBAS, B. Random Graphs. Cambridge University Press,
2001.

[7] BOYD, S., GHOSH, A., PRABHAKAR, B., AND SHAH, D. Gos-
sip algorithms: design, analysis and applications. In INFOCOM
(2005).

[8] CAESAR, M., CASTRO, M., NIGHTINGALE, E. B., O’SHEA,
G., AND ROWSTRON, A. Virtual ring routing: network routing
inspired by DHTs. In SIGCOMM (2006).

[9] CHEN, S. China tightens Internet censorship controls.
http://bbc.co.uk/news/world-asia-pacific-13281200, May 2011.

[10] Beijing orders new controls on ‘Weibo’ microblogs.
http://bbc.co.uk/news/world-asia-china-16212578, Dec. 2011.

[11] Citizens Lab. Everyones guide to bypassing Internet censorship.
http://deibert.citizenlab.org/Circ guide.pdf.

[12] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: a distributed anonymous information storage and retrieval
system. In PETS (2001).

[13] Congressional executive commission on China, annual report.
http://cecc.gov/pages/annualRpt/annualRpt11/AR2011final.pdf,
2011.

[14] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
the second-generation onion router. In USENIX Sec. (2004).

[15] DINGLEDINE, R., AND MURDOCH, S. Why Tor is slow and what
we’re going to do about it. https://blog.torproject.org, 2009.

[16] FLAXMAN, A. D. Algorithms and models for the web-graph.
In Expansion and Lack Thereof in Randomly Perturbed Graphs,
W. Aiello, A. Broder, J. Janssen, and E. Milios, Eds. 2008.

[17] FLOSS MANUALS. https://howtobypassinternetcensorship.org.

[18] GUMMADI, K. P., DUNN, R. J., SAROIU, S., GRIBBLE, S. D.,
LEVY, H. M., AND ZAHORJAN, J. Measurement, modeling, and
analysis of a peer-to-peer file-sharing workload. In SOSP (2003).

[19] HOWARD, P., DUFFY, A., FREELON, D., HUSSAIN, M., MARI,
W., AND MAZAID, M. Opening closed regimes: What was the role
of social media during the arab spring? http://pitpi.org/?p=1051,
2011.

[20] ISDAL, T., PIATEK, M., KRISHNAMURTHY, A., AND ANDER-
SON, T. Privacy-Preserving P2P Data Sharing with OneSwarm.
In SIGCOMM (2010).

[21] KARLIN, J., ELLARD, D., JACKSON, A., JONES, C., LAUER,
G., MANKINS, D., AND STRAYER, W. Decoy routing: Toward
unblockable internet communication. In USENIX FOCI (2011).

[22] KELLY, S., AND COOK, S. Freedom on the net 2011: A global
assessment of Internet and digital media. Freedom House (2011).

[23] KUNG, H. T., BLACKWELL, T., AND CHAPMAN, A. Credit-based
flow control for ATM networks: credit update protocol, adaptive
credit allocation and statistical multiplexing. In SIGCOMM (1994).

[24] LE MERRER, E., KERMARREC, A.-M., AND MASSOULIE, L.
Peer to peer size estimation in large and dynamic networks: A
comparative study. In HPDC (2006).

[25] LESNIEWSKI-LASS, C., AND KAASHOEK, M. F. Whanaun-
gatanga: Sybil-proof distributed hash table. In NSDI (2010).

[26] LI, J., STRIBLING, J., MORRIS, R., KAASHOEK, F., AND GIL,
T. A performance vs. cost framework for evaluating DHT design
tradeoffs under churn. IEEE Infocom (2005).

[27] LIANG, G. Surveying Internet usage and its impact in seven chinese
cities. Tech. rep., Chinese Academy of Social Sciences, 2007.

[28] LIU, V., HAN, S., KRISHNAMURTHY, A., AND ANDERSON, T.
Tor Instead of IP. In HotNets (Nov. 2011).

[29] MADHYASTHA, H. V., ISDAL, T., PIATEK, M., DIXON, C.,
ANDERSON, T., KRISHNAMURTHY, A., AND VENKATARAMANI,
A. iPlane: An Information Plane for Distributed Services. In OSDI
(2006).

[30] MASSOULIÉ, L., LE MERRER, E., KERMARREC, A.-M., AND
GANESH, A. Peer counting and sampling in overlay networks:
random walk methods. In PODC (2006).

[31] MCLACHLAN, J., TRAN, A., AND ANDYONGDAE KIM, N. H.
Scalable onion routing with torsk. In CCS (2009).

[32] MISLOVE, A., MARCON, M., GUMMADI, K. P., DRUSCHEL, P.,
AND BHATTACHARJEE, B. Measurement and analysis of online
social networks. In IMC (2007).

[33] MISLOVE, A., POST, A., DRUSCHEL, P., AND GUMMADI, K. P.
Ostra: leveraging trust to thwart unwanted communication. In
NSDI (2008).

[34] MOHAISEN, A., YUN, A., AND KIM, Y. Measuring the mixing
time of social graphs. In IMC (2010).

[35] MOTOYAMA, M., MCCOY, D., LEVCHENKO, K., VOELKER,
G. M., AND SAVAGE, S. Dirty Jobs: The Role of Freelance Labor
in Web Service Abuse. In USENIX Sec. (2011).

[36] OPENNET INITITATIVE. Internet filtering country profiles.
opennet.net.

[37] R. CLAYTON AND S. MURDOCH AND R. N. M. WATSON.
Ignoring the great firewall of China. In PETS (2006).

[38] RAICIU, C., HANDLY, M., AND WISCHIK, D. Coupled
congestion control for multipath transport protocols. IETF RFC
6356 (Oct. 2011).

[39] REARDON, J., AND GOLDBERG, I. Improving Tor using a
TCP-over-DTLS tunnel. In USENIX sec. (2009).

[40] REITER, M. K., AND RUBIN, A. D. Crowds: anonymity for Web
transactions. ACM Trans. Inf. Syst. Secur. (1998).

[41] RFC 4981. http://faqs.org/rfcs/rfc4981.html.

[42] ROBERTS, H., ZUCKERMAN, E., YORK, J., FARIS, R., AND
PALFREY, J. 2010 circumvention tool usage report. The Berkman
Center, 2010.

[43] ROBERTS, H., ZUCKERMAN, E., YORK, J., FARIS, R., AND
PALFREY, J. International bloggers and Internet control: Full
survey results. The Berkman Center, 2011.

[44] SCELLATO, S., MASCOLO, C., MUSOLESI, M., AND LATORA, V.
Distance matters: Geo-spacial metrics for online social networks.
In WOSN (2010).

[45] SENGUPTA, S. Group says it has new evidence of Cisco’s misdeeds
in China. The New York Times (Sept. 2011).

[46] SHALUNOV, S., HAZEL, G., IYENGAR, J., AND KUEHLEWIND,
M. Low extra delay background transport (LEDBAT). In IETF
Internet Draft (2006).

http://www.google.com/transparencyreport/traffic
http://www.bbc.co.uk/news/world-asia-pacific-13281200
http://www.bbc.co.uk/news/world-asia-china-16212578
http://deibert.citizenlab.org/Circ_guide.pdf
http://cecc.gov/pages/annualRpt/annualRpt11/AR2011final.pdf
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://www.howtobypassinternetcensorship.org/
http://pitpi.org/?p=1051
https://opennet.net
http://www.faqs.org/rfcs/rfc4981.html
http://cyber.law.harvard.edu/publications/2010/Circumvention_Tool_Usage
http://cyber.law.harvard.edu/publications/2010/Circumvention_Tool_Usage
http://cyber.law.harvard.edu/publications/2011/International_Bloggers_Internet_Control_Full_Survey_Results
http://www.nytimes.com/2011/09/03/technology/group-says-it-has-new-evidence-of-ciscos-misdeeds-in-china.html

[47] STUTZBACH, D., AND REJAIE, R. Understanding churn in
peer-to-peer networks. In SIGCOMM (2006).

[48] Tor metrics portal. https://metrics.torproject.org/performance.html.

[49] TOR PROJECT. Obfsproxy.
https://torproject.org/projects/obfsproxy.

[50] China blocking Tor. https://blog.torproject.org, Mar. 2010.

[51] URDANETA, G., PIERRE, G., AND VAN STEEN, M. A survey of
DHT security techniques. ACM Computing Surveys 43, 2 (2011).

[52] VASSERMAN, E. Y., JANSEN, R., TYRA, J., HOPPER, N., AND
KIM, Y. Membership-concealing overlay networks. In CCS (2009).

[53] WANG, Q., GONG, X., NGUYEN, G. T. K., HOUMANSADR, A.,
AND BORISOV, N. Censorspoofer: Asymmetric communication
using IP spoofing for censorship-resistant web browsing. In CCS
(2012).

[54] WEINBERG, Z., WANG, J., YEGNESWARAN, V., BRIESEMEIS-
TER, L., CHEUNG, S., WANG, F., AND BONEH, D. StegoTorus:
A camouflage proxy for the Tor anonymity system. In CCS (2012).

[55] WISCHIK, D., RAICIU, C., GREENHALGH, A., AND HANDLEY,
M. Design, implementation and evaluation of congestion control
for multipath TCP. In NSDI (2011).

[56] WUSTROW, E., WOLCHOK, S., GOLDBERG, I., AND HALDER-
MAN, J. A. Telex: Anticensorship in the Network Infrastructure.
In USENIX sec. (2011).

[57] XIE, Y., YU, F., ARCHAN, K., GILLUM, E., GOLDSZMIDT, M.,
AND WOBBER, T. How dynamic are IP addresses. In SIGCOMM
(2007).

[58] Access to YouTube blocked until further notice because of
non-islamic videos. http://en.rsf.org/pakistan-youtube-access-
unblocked-after-27-02-2008,25889.html.

[59] YU, F., GOPALAKRISHNAN, V., LEE, D., AND RAMAKRISHNAN,
K. K. Nemor: A congestion-aware protocol for anonymous
peer-based content distribution. In IEEE P2P (2011).

[60] YU, H., KAMINSKY, M., GIBBONS, P. B., AND FLAXMAN, A. D.
SybilGuard: defending against Sybil attacks via social networks.
SIGCOMM (2006).

[61] ZAFARANI, R., AND LIU, H. Social computing data repository
at ASU. http://socialcomputing.asu.edu, 2009.

14

https://metrics.torproject.org/performance.html
https://torproject.org/projects/obfsproxy
https://blog.torproject.org/blog/china-blocking-tor-round-two
http://en.rsf.org/pakistan-youtube-access-unblocked-after-27-02-2008,25889.html
http://en.rsf.org/pakistan-youtube-access-unblocked-after-27-02-2008,25889.html
http://socialcomputing.asu.edu

	Introduction
	Background and Challenges
	Open Access Overlays are Easily Blocked
	Social Network Based Overlays Have Poor Connectivity
	Overlays Have Poor Transport Performance

	System Design
	Adversaries and Threat Model
	System Overview
	Hybrid Overlay Network
	Mechanisms for Disseminating Relays and Computing Network Parameters
	Policies
	Analysis

	Accessing the Internet through exit nodes
	Internal Overlay DHT
	Overlay Security: Attacks and Defenses
	Overlay Performance
	Deployment

	Evaluation
	Simulation Results
	Transport Performance

	Related Work
	Conclusion

